

5. $y = x^2 - 6x + 1, x = 3$	6. $y = x^2 - 2x - 6, x = 1$
minimum	minimum

- 8. $y = x^5 2x^3 2x^2$, x = 0 9. $y = x^3 + x^2 x$, x = -1 10. $y = 2x^3 + 4$, x = 0maximum maximum
- **11.** *Physics* Suppose that during an experiment you launch a toy rocket straight upward from a height of 6 inches with an initial velocity of 32 feet per second. The height at any time *t* can be modeled by the function $s(t) = -16t^2 + 32t + 0.5$ where s(t) is measured in feet and *t* is measured in seconds. Graph the function to find the maximum height obtained by the rocket before it begins to fall. 16.5 ft

7. $y = x^4 + 3x^2 - 5, x = 0$ minimum

point of inflection

