The Biosphere

Chapter 58
Effects of Sun, Wind, Water

• **Biosphere:** includes all living communities on Earth

• Global patterns of life on Earth are influenced by

1. The amount of solar radiation that reaches different areas
2. Patterns of global atmospheric circulation which influence oceanic circulation
Effects of Sun, Wind, Water

• Earth receives energy from the Sun
• Solar radiant energy passes through the atmosphere and its intensity and wavelength composition are modified
• About 1/2 of the energy is absorbed within the atmosphere
 – UV-B is strongly absorbed by the ozone
Effects of Sun, Wind, Water

• Some parts of the Earth’s surface receive more energy from the Sun than others
• This has a great effect on climate
Effects of Sun, Wind, Water

• **Angle of incidence**: how the Sun’s rays strike the spherical Earth

• **Earth’s orbit around the Sun and its daily rotation on its own axis** affect climate
Effects of Sun, Wind, Water

• Global circulation patterns
 – Hot air rises relative to cooler air
 – Heating at the equator causes air to rise from the surface to high in the atmosphere
 – Rising air is rich in water vapor
 • Warm air holds more water than cold
 • Intense solar radiation at the equator provides the heat needed for water to evaporate
Effects of Sun, Wind, Water

- After the warm moist air moves from the surface at the equator
 - Warm air moves north and south
 - Cooler air flows toward the equator from both hemispheres
 - Air descends at 30° latitude - desert regions of the earth
 - At 60° latitude air begins to rise again
Effects of Sun, Wind, Water

Annual mean temperature varies with latitude

Global patterns of atmospheric circulation
Effects of Sun, Wind, Water

• **The Coriolis effect:** the curvature of the paths of the winds due to Earth’s rotation
 – Northern hemisphere: counterclockwise -- winds curve to the right of their direction of motion
 – Southern hemisphere: clockwise -- winds curve to the left; blow westward as well as toward the equator
Effects of Sun, Wind, Water

Ocean currents are largely driven by winds
Effects of Sun, Wind, Water

• Regional and local differences affect terrestrial ecosystems

• Rain shadows:
 – Rain falls as air rises
 – Remains dry on the leeward side of the mountain
Effects of Sun, Wind, Water

• Monsoon winds
 – Heating and cooling of continent
 – Winds blow off the water into the interior in the summer
 – Winds blow off land onto the water in the winter
 – Winds affect rainfall patterns
 • Duration
 • Strength
Effects of Sun, Wind, Water

- Elevation: temperature and other conditions change with elevation
- Air temperature falls about 6°C for every 1000m increase in elevation
Effects of Sun, Wind, Water

• Presence of microclimate factors
• **Microclimates**: highly localized sets of climatic conditions
 – Gaps in forest canopy
 • High air temperature and low humidity
 – Under a log in the forest
 • Low air temperature and high humidity
Biomes

• **Biomes:** a major type of ecosystem on land

• Each biome has a characteristic appearance
 – Defined largely by sets of regional climatic conditions

• Biomes are named according to their vegetational structures

• Eight principle biomes
Biomes

Predictors of biome distribution
Temperature and precipitation
Biomes

• Tropical rain forests
 – 140-450 cm rain/yr
 – Richest ecosystems on land
 – High temperature and high rainfall
 – Very high diversity: 1200 species of butterflies in a single square mile

<table>
<thead>
<tr>
<th>Biome</th>
<th>Climate</th>
<th>Example Location</th>
<th>Characteristic Flora</th>
<th>Characteristic Fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical Rain Forest</td>
<td>High temperatures year round</td>
<td>Brazilian rain forest</td>
<td>Plant Species</td>
<td>Animal Species</td>
</tr>
</tbody>
</table>

(Images: © age fotostock/SuperStock, © Luiz C. Marigo/Peter Arnold, © age fotostock/SuperStock)
Biomes

- **Savanna**
 - 50-120 cm rainfall/yr
 - Tropical or subtropical grasslands
 - Occur as a transition ecosystem between tropical rainforests and deserts
 - Serengeti of East Africa

<table>
<thead>
<tr>
<th>Biome</th>
<th>Climate</th>
<th>Example Location</th>
<th>Characteristic Flora</th>
<th>Characteristic Fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savanna</td>
<td>Warm temperatures year round</td>
<td>Serengeti</td>
<td>Plant Species</td>
<td>Animal Species</td>
</tr>
</tbody>
</table>

(Left to right): © Mitsuaki Iwaga/Minden Pictures; © Konrad Wothe/Minden Pictures; © age fotostock/SuperStock
Biomes

- Deserts
 - 25-40cm rainfall/yr; unpredictable
 - Plants and animals cannot depend on any rainfall
 - 30°N and S latitudes, rainshadows
 - Vegetation sparse, animals adapted to little water availability
Biomes

• Temperate grasslands: prairies
 – Rich soils
 – Grasses with roots that penetrate deep into the soil
 – In North America converted to agricultural use
 – Adapted to periodic fire

<table>
<thead>
<tr>
<th>Biome</th>
<th>Climate</th>
<th>Example Location</th>
<th>Characteristic Flora</th>
<th>Characteristic Fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperate Grasslands</td>
<td>Warm summers cool winters</td>
<td>South Dakota prairie</td>
<td>Plant Species</td>
<td>Animal Species</td>
</tr>
<tr>
<td>Biome</td>
<td>Climate</td>
<td>Example Location</td>
<td>Characteristic Flora</td>
<td>Characteristic Fauna</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Temperate Deciduous Forest</td>
<td>Warm summers cool winters</td>
<td>Acadia National Park</td>
<td>Plant Species</td>
<td>Animal Species</td>
</tr>
<tr>
<td>Temperate Evergreen Forest</td>
<td>Temperate climates</td>
<td>Mount Hood</td>
<td>Plant Species</td>
<td>Animal Species</td>
</tr>
<tr>
<td>Taiga</td>
<td>Cold temperatures</td>
<td>Northwest Territory, Canada</td>
<td>Plant Species</td>
<td>Animal Species</td>
</tr>
<tr>
<td>Tundra</td>
<td>Cold temperatures</td>
<td>Alaska</td>
<td>Plant Species</td>
<td>Animal Species</td>
</tr>
</tbody>
</table>
Freshwater Habitats

- Fresh water covers only 2% of Earth’s surface
- Formation of fresh water
 - Evaporation of water into atmosphere
 - Falls back to Earth’s surface as precipitation
- Wetlands: marshes, swamps, bogs
- Rivers, lakes, streams
Freshwater Habitats

• Life depends on oxygen availability
 – Oxygen per liter is only 5% of that in the atmosphere
• Oxygen added by photosynthesis and aeration from the atmosphere
• Oxygen is removed by animal and detritivores respiration, and through decaying organic matter
• Warm water holds less O_2 than cooler water
Freshwater Habitats

• Lake and pond habitats change with water depth
 – Intensity of light decreases with water depth
 – **Photic zone:** area where light penetrates and photosynthesis is possible
 – **Littoral zone:** shallows at edge of lake
 – **Aphotic (benthic) zone:** below light penetration level
Freshwater Habitats

Lake Zones and Productivity

Lake Zones and Productivity
Freshwater Habitats

- **Thermal stratification**: warm water is less dense than cold water and tends to float on top. Layering is stratification.
- **Thermocline**: a transition layer between warm and cold waters
- Water is most dense at 4°C and least dense at 0°C
- Thermal stratification tends to cut off the oxygen supply to bottom waters
- Anoxia: oxygen depleted waters
Freshwater Habitats

- Wind can force the layers to mix

Annual cycle of thermal stratification in a temperate-zone lake
Freshwater Habitats

- Oligotrophic water: low in nutrients, usually high in oxygen
- Crystal clear conditions because of the low amount of organic matter
- Light penetrates deep in the water column
Freshwater Habitats

• Eutrophic water: high in nutrients, densely populated with algae and plant material

• Low in dissolved oxygen in summer

• Light does not penetrate the water column
Marine Habitats

- 71% of the Earth’s surface is covered by ocean
- Continental shelves: near coastlines, water is not especially deep
 - ~ 80km wide and 1m to 130m deep
- Average depth of the open ocean is 4,000 - 5,000m deep
 - Trenches: 11,000m deep
- Principle primary producers are phytoplankton (single cell or colonial)
Marine Habitats

- **Oceanic Zones**

- Open oceans have low primary productivity

- Oligotrophic ocean: Low nutrient levels “biological deserts”
Marine Habitats

- Continental shelf ecosystems provide abundant resources
- **Neritic waters**: waters over the shelves
 - High concentrations of nitrates and other nutrient
 - Shallow, up welling occurs here
- 99% of ocean food supply comes from neritic waters
- Petroleum comes almost exclusively from shelves
Marine Habitats

- **Estuaries**: shelf ecosystem where fresh water from streams or rivers mix with ocean water
 - **Intertidal habitat**: area that is exposed to air at low tide but under water at high tide
 - **Salt marshes**: in the intertidal zone
 - **Mangrove swamps**: occur in tropical and subtropical intertidal zones
Marine Habitats

Mangrove Swamp Louisiana Marsh

Coral Reef
Marine Habitats

• Banks and coral reefs
 – Banks are local shallow areas on the shelves
 • Fishing grounds
 – Coral reefs occur in subtropical and tropical latitudes
 – Defining feature is stony corals
 • Algal symbioses: cnidarians and dinoflagellates
Marine Habitats

Green areas are upwelling regions

Dark blue are oligotrophic

Upwelling regions: localized places where deep water is drawn consistently to the surface
Marine Habitats

• *El Niño Southern Oscillation*
 – 2-7 years on an irregular and unpredictable basis
 – Coastline waters become waters become profoundly warm
 – Primary productivity unusually low
 – Weakening of the east-to-west Trade Winds
 – Upwelling continues, but only recirculates the thick warm surface layer
Marine Habitats

• El Niño can wreak havoc on ecosystems
 – Plankton abundance can drop to 1/20th normal levels
 – Fish stocks disappear
 – Seabirds and sea lion populations crash

• On land:
 – Heavy rains produce abundant seeds and land birds flourish
 – Increase rodent population
 – Increase predator population
Marine Habitats

El Niño winter
Marine Habitats

- Deep sea: cold, dark place with fascinating communities
 - Seasonless, 2-5°C, pressure: 400-500 atms
- Food originates from photosynthesis in the sunlit waters
- 99% eaten as it drifts down through the water column
- Animals: small-bodied, thinly distributed
Marine Habitats

Hydrothermal vent communities: thick with life

• Large bodied animals
• Do not depend on the Sun’s energy for primary production
• Depend on sulfur-oxidizing bacteria
• Water temperature up to 350°C
Marine Habitats

• Once Trade Winds weaken a bit, the pressure difference that makes them blow is lessened, weakening the Trade Winds even more
 – Shift the weather systems of the western Pacific Ocean 6,000km eastward
 – Tropical rainstorms fall on Peru and Ecuador
Human Impacts: Pollution

• Human impacts can cause adverse changes in ecosystems
• DDT: highly effective insecticide, sprayed in United States after WWII
• DDT is oil soluble and biomagnifies in the food chain
• Result of use:
 – Populations of ospreys, bald eagles, and brown pelicans plummeted
Human Impacts: Pollution

- Biomagnification of DDT concentrations in the food chain. Predatory bird species were affected because it made their eggshells so thin that the shells broke during incubation.
Human Impacts: Pollution

- Freshwater habitats are threatened by pollution and resource use
- **Point source pollution:** comes from an identifiable location
 - Factories
 - Sewage-treatment plants
- Laws and technologies can be applied because the source is known
Human Impacts: Pollution

• **Diffuse pollution**: is exemplified by eutrophication caused by excessive run-off of nitrates and phosphates
 – Dissolved oxygen declines
 – Fish species change, carp take the place of more desirable species
• Can originate from thousands of lawns, farms, golf clubs…
• Solutions depend on public education and political action
Human Impacts: Pollution

• Pollution from coal burning: acid precipitation
 – When coal is burned sulfur oxide is released
 – Sulfur oxide combines with water in the atmosphere to create sulfuric acid
• Mercury emitted in stack smoke is a second potential problem
 – Mercury biomagnifies: causes brain damage in humans
Human Impacts: Pollution

- Acid precipitation and mercury pollution affect freshwater ecosystems
 - pH levels below 5.0, many fish species and other aquatic animals die or are unable to reproduce
 - Mercury accumulates in the tissues of food fish: dangerous to public health
Human Impacts: Pollution

• Terrestrial ecosystems are threatened by deforestation
 – Single greatest problem is deforestation by cutting or burning
Human Impacts: Pollution

• Deforestation consequences
 – Loss of habitat
 – Major contributing factor in increased desertification
 – Loss of nutrients from soils
 – Eutrophication of lakes, streams, and rivers
 – Disruption of the water cycle
 – Loss of topsoil

51
Human Impacts: Pollution

• Overfishing of the ocean
 – Crisis proportions -- single greatest problem in the ocean realm

Poaching on terrestrial animals increases when fish populations decline
Human Impacts: Pollution

• Aquaculture is only a quick fix
 – Dietary protein needs of many aquacultured fish are met with wild-caught fish
 – Often damage natural ocean ecosystems: clearing of mangrove swamps for aquaculture area
Human Impacts: Pollution

- Pollution effects in the ocean
 - Plastic found washed up on beaches in remote areas
 - Waters are laced with toxic chemicals
 - Biopsy of tissue from Arctic killer whales reveal high levels of pesticides and flame-retardant chemicals
Human Impacts: Pollution

• Destruction of coastal ecosystems
 – Estuaries subjected to severe eutrophication
 – Destruction of salt marshes
 • Major contributing factor to hurricane destruction along the coast of Louisiana
 • Had marshes been present, Katrina might not have caused so much damage
Human Impacts: Pollution

• Stratospheric ozone depletion
 – Ozone hole: over Antarctica between 1/2 to 1/3 of original ozone concentrations are present

![Image of stratospheric ozone depletion](image1.png)

![Graph showing Southern Hemisphere Ozone Hole Area](image2.png)
Human Impacts: Pollution

• Over United States
 – Ozone concentration has been reduced by about 4%
• Stratospheric ozone is important because it absorbs UV radiation (UV-B)
• UV-B damages tissue increases risks for
 – Cataracts
 – Skin cancer: 1% drop in ozone leads to a 6% increase in skin cancer
Human Impacts: Pollution

- Ozone depletion and CFCs: Major cause of ozone depletion are chlorine and bromine containing compounds in the atmosphere
- Use of CFCs are being phased out in many countries
- CFC are chemically stable in the atmosphere for many years
- Ozone depletion will continue to occur until all of the CFCs are broken down
Global Warming

- CO$_2$ and other gases in the atmosphere maintain the Earth’s average temperature at 25°C
- Human activities are now changing the composition of the atmosphere; increasing the CO$_2$ and other gas levels
- Because of the increase, global temperatures are increasing, causing global warming
Global Warming

2005 was the warmest year on record
Global Warming

• Based on the outputs of all four models
 – Temperature in Europe is predicted to increase by 2°C-4°C by 2080
 – Increases in temperature will be disruptive
 • Snow cover in the Swiss Alps: 300 m higher than today
 • Parts of southern Europe will receive 20% less precipitation
• Cause major economic upheaval
Global Warming

Concentrations of CO$_2$ since 1958
Global Warming

• Cause of global warming?
 – Greenhouse effect: which is good in that it keeps the Earth warm enough for life
 – But increase in CO$_2$ emissions through burning of fossil fuels will continue to increase temperatures on Earth
Global Warming

• How CO$_2$ affects temperature
 – CO$_2$ absorbs electromagnetic radiant energy
 – Earth receives radiant energy from the Sun
 – Earth also emits radiant energy
 – The Earth’s temperature will be constant only if the rates of these two processes are equal
Global Warming

• The atmosphere allows in short wave radiant energy from the Sun, but does not allow the long wave radiant energy from the Earth to escape

• This is the same principle as a Greenhouse

Short wave- in, long wave - cannot get out, increase in temperature in the greenhouse
Global Warming

• Other greenhouse gases
 – **Methane:** 20 xs the heat trapping properties of CO$_2$, less concentration in the atmosphere, less long-lived
 – Methane is produced globally in anaerobic soils and fermentation reactions of ruminant mammals
 – Methane is locked up in permafrost
 • Sudden release will cause large perturbation in global temperature
Global Warming

• Other greenhouse gases
 – **Nitrous oxide**: agricultural use of fertilizers is the largest source
 – Energy consumption
 – Industrial use

• Evidence confirms global warming
 – Ice free seasons 2.5 wks longer
 – Ice at the North Pole decreased
 – Glaciers decreasing in size
Global Warming

Disappearing glaciers
Global Warming

- Global temperature change has affected ecosystems in the past and is doing so now
 - Shift in species geographic ranges
 - Migratory birds arrive earlier at their summer breeding grounds
 - Insects and amphibians breed earlier
 - Wild fruit fly populations—changes in gene frequency
 - “bleaching” of reef building corals
Global Warming

• Problems
 – Rate of warming today is rapid
 – Evolutionary adaptations for species survival may not have time to occur
 – Natural areas no longer cover the whole landscape
 – Species that shift to higher altitudes may have reached the peak of the mountain
 – Species’ habitat disappears entirely
Global Warming

• Possible effects on human species
 – Rising sea levels: 200 million people would be affected by increased flooding
 • Coastal cities and entire islands could be submerged
 – Frequency or severity of extreme events will increase (hurricanes, El Niño)
Global Warming

• Effects on agriculture
 – Positive: more CO\textsubscript{2} tends to increase growth of some crops
 – Increase pollen production causing more severe allergies
 – More droughts in some regions
 – Decrease in crop production in tropical areas
Global Warming

• Human health
 – Frequent flooding = loss of safe drinking water
 • Cholera and other epidemics may occur more often
 – Tropical diseases may invade nontropical countries
 • Malaria
 • Dengue fever