• I will be able to write an equation with base e that models exponential growth or decay and use it to make predictions.

Sec. 11.3 The number e

Exponential Growth or Decay growing or decaying continuously

$$N = N_0 e^{kt}$$

N is the final amount
N₀ is initial amount
k is a constant
t is the number of time periods

Apr 1-6:53 PM

Apr 1-6:53 PM

Continuously Compounded Interest

$$A = Pe^{rt}$$

P is the principal
A is the final amount
r is the rate
t is the number of time periods

Apr 1-6:56 PM

30 $y = q^{x}$ Q5 a. $y = .85^{x}$ $x = \frac{1}{2}$ c. $y = .85^{12}$

13) b.
$$P = 1 - e^{-mt}$$

 $.5 = 1 - e^{-34t}$
 y_2 y_1 .02

Feb 24-7:41 AM

• I will be able to simplify and evaluate logarithmic expressions using of the properties of logarithms

Sec. 11.4 Logarithmic Functions

$$y = a \cdot b^{x}$$

Logarithmic Form

The logarithmic function $y = log_a x$, where a > 0, $a \ne 1$ is the inverse of the exponential function $y = a^x$

Apr 1-6:59 PM

Definition of a Logarithm:

$$b = a^{x} \iff x = \log_{a} b$$

$$\log_{10} x \text{ is often written as } \log_{x} x$$

$$\log_{e} x \text{ is often written as } \ln x$$

$$0 \text{ Solution } 0 \text{ Solution }$$

$$\log_{10} 1000 \qquad \log_{8} 16 = x$$

$$3 \qquad \begin{cases} x = 16 \\ 2^{3x} = 2^{4} \end{cases}$$

$$\log_{2} \frac{1}{8} = x \qquad 2^{x} = \frac{1}{8} \qquad \log_{16} 2$$

$$-3 \qquad 2^{x} = 2^{-3} \qquad 7_{4}$$

Feb 23-4:48 PM

Logarithm Practice (No Calculator)

- a) Evaluate log_327_{\circ} b) Evaluate log_55_{\circ}

- c) Evaluate $\log_{12}1 = x$ d) Evaluate $\log_3(1/3)$ e) Evaluate $\log_4 2$ f) Evaluate $\log_8 \sqrt{8}$ g) Solve $\log_2 2 = x$ h)Solve $\log_5 25 = 5x$

$$X = 5$$
 $5^{5x} = 25 = \frac{2}{5}$

i) Solve $\log_x 36=2$ $5^{\frac{1}{3}}=5^{\frac{1}{3}}$ j) Solve $\log_{10}(9x+1)=3$

$$X = b$$

 $X = 536$
 $X = 536$

Jan 11-7:56 AM

$$x = \log_2 a$$
 $y = \log_2 b$ $z = \log_2 c$

Write the following in terms of x, y, and z.

a)
$$\log_2 \frac{a^2 b}{c^3} = \log_2 a^2 + \log_2 b - \log_2 c^3$$

 $= 2 \log_2 a + \log_2 b - 3 \log_2 c$
 $= 2 \times + y - 3 = 2$
 $\log_2 \frac{a}{b^2 c^3}$ $\log_2 8ab$
 $x - 2y - 3 = 2$
 $x - (2y + 3 = 2)$ $\log_2 8 + \log_2 a + \log_2 b$

Sep 23-9:32 AM

7. Solve the equation $\log_8 \sqrt{1-x} = \frac{1}{3}$.

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8 = 16$$

$$8$$

$$8^{73} = \sqrt{1-x}$$

$$\log \frac{x^{2}}{x} = 3$$

$$3 + 3 \log x = 6 + \log x$$

$$3 \log x - (\log x = 3)$$

$$10^{3} = \chi^{2}$$

$$2 \log x = 3$$

$$\log x = \frac{3}{2}$$

$$10^{3/2} = x$$

Feb 23-4:47 PM

Properties of Logarithms

$$\log_a xy = \log_a x + \log_a y$$

$$\log_2 32 = \log_2 8 + \log_2 4$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log 6 = \log 42 - \log 7$$

$$\log_a x^r = r \log_a x$$

$$\log_5 8 = \log_5 (2^3) = 3 \log_5 2$$

$$\log_a 1 = 0$$

$$a^{\circ} = 1$$

Sep 23-9:28 AM

Logarithm Property Practice (No Calculator)

Express the following in terms of x, y and zgiven x=log a, y=log b, z=log c.

- a) log(c/a)
- b) log b⁵
- c) $\log (a^2b)$
- d) $\log(a^2/(bc^3))$
- e) $log(5b)+log(2c^2)$

Simplify:

- f) $\ln x + \ln (2y) \ln z$ q) $3 \ln x 5 \ln y$
- h) $\ln((5x^3)/(2y))$
- i) $ln(8x^4y^2z)$

Jan 11-8:07 AM

Assignment: Sec. 11.3 p. 714 #12, 13, 18

Sec. 11.4 p. 723 #24, 26, 36-40, 43-47(odds), 49-51, 62

- I will be able to write an equation with base e that models exponential growth or decay and use it to make predictions.
- I will be able to simplify and evaluate logarithmic expressions using of the properties of logarithms