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Chapter 4
Applications of Derivatives

Section 4.1 Extreme Values of Functions
(pp. 187–195)

Exploration 1 Finding Extreme Values

  1. From the graph we can see that there are three critical
points: x = −1 0 1, , .

Critical point values: f f f( ) . , ( ) , ( ) .− = = =1 0 5 0 0 1 0 5

Endpoint values: f f( ) . , ( ) .− = =2 0 4 2 0 4

Thus f  has absolute maximum value of 0.5 at x = –1 and
x = 1, absolute minimum value of 0 at x = 0, and local
minimum value of 0.4 at x = –2 and x = 2.

  2. The graph of ′f has zeros at x = –1 and x = 1 where the
graph of f has local extreme values. The graph of ′f is not
defined at x = 0, another extreme value of the graph of f.

      

  3. Using the chain rule and
d

dx
x

x

x
( ) = , we find

df

dx

x

x

x

x
= −

+
i

1

1

2

2 2( )
.

Quick Review 4.1

  1. ′ =
−

− = −
−

f x
x

d

dx
x

x
( ) ( )

1

2 4
4

1

2 4
i

  2. ′ = − = − − −− −f x
d

dx
x x

d

dx
x( ) ( ) ( ) ( )/ /2 9 9 92 1 2 2 3 2 2i

= − − − =
−

−( ) ( )
( )

/
/

9 2
2

9
2 3 2

2 3 2
x x

x

x

  3. ′ = − = −g x x
d

dx
x

x

x
( ) sin (ln ) ln

sin (ln )
i

  4. ′ = =h x e
d

dx
x ex x( ) 2 22 2i

  5. Graph (c), since this is the only graph that has positive
slope at c.

  6. Graph (b), since this is the only graph that represents a
differentiable function at a and b and has negative
slope at c.

  7. Graph (d), since this is the only graph representing a
function that is differentiable at b but not at a.

  8. Graph (a), since this is the only graph that represents a
function that is not differentiable at a or b.

  9. As x x→ − →− +3 9 02, . Therefore, lim ( ) .
x

f x
→ −

= ∞
3

10. As x x→ − →+ +3 9 02, . Therefore, lim ( ) .
x

f x
→− +

= ∞
3
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11. (a) 
d

dx
x x x( )3 22 3 2− = −

′ = − =f ( ) ( )1 3 1 2 12

(b) 
d

dx
x( )+ =2 1

′ =f ( )3 1

(c) Left-hand derivative:
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Right-hand derivative:
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( ) ( )

lim
[( ) ]

lim

h h

f h f
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=
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Since the left-and right-hand derivatives are not equal,

′f ( )2 is underfined.

12. (a) The domain is x ≠ 2. (See the solution for 11.(c)).

(b) ′ = − <
>

⎧
⎨
⎩

f x x x
x

( ) ,
,

3 2 2
1 2

2

Section 4.1 Exercises

  1. Minima at (–2, 0) and (2, 0), maximum at (0, 2)

  2. Local minimum at (–1, 0), local maximum at (1, 0)

  3. Maximum at (0, 5) Note that there is no minimum since the
endpoint (2, 0) is excluded from the graph.

  4. Local maximum at (–3, 0), local minimum at (2, 0),
maximum at (1, 2), minimum at (0, –1)

  5. Maximum at x = b, minimum at x c= 2;
The Extreme Value Theorem applies because f  is continuous
on [a, b], so both the maximum and minimum exist.

  6. Maximum at x = c, minimum at x = b;
The Extreme Value Theorem applies because f  is continuous
on [a, b], so both the maximum and minimum exist.

  7. Maximum at x = c, no minimum;
The Extreme Value Theorem does not apply, because the
function is not defined on a closed interval.

  8. No maximum, no minimum;
The Extreme Value Theorem does not apply, because the
function is not continuous or defined on a closed interval.

  9. Maximum at x = c, minimum at x = a;
The Extreme Value Theorem does not apply, because the
function is not continuous.

10. Maximum at x = a, minimum at x = c;
The Extreme Value Theorem does not apply since the
function is not continuous.

11. The first derivative ′ = − +f x
x x

( )
1 1
2

has a zero at x = 1.

Critical point value: f ( ) ln1 1 1 1= + =
Endpoint values: f ( . ) ln . .0 5 2 0 5 1 307= + ≈

                           f ( ) ln .4
1

4
4 1 636= + ≈

Maximum value is
1

4
4+ ln at x = 4;

minimum value is 1 at x = 1;

local maximum at
1

2
2 2, ln−⎛

⎝⎜
⎞
⎠⎟

12. The first derivative ′ = − −g x e x( ) has no zeros, so we need

only consider the endpoints.

g e e g e
e

( ) ( )( )− = = = =− − −1 1
11 1

Maximum value is e at x = −1;

minimum value is
1

e
at x = 1.

13. The first derivative ′ =
+

h x
x

( )
1

1
has no zeros, so we need

only consider the endpoints.

h h( ) ln ( ) ln0 1 0 3 4= = =
Maximum value is ln 4 at x = 3;

minimum value is 0 at x = 0.

14. The first derivative ′ = − −k x xe x( ) 2
2

has a zero at x = 0.
Since the domain has no endpoints, any extreme value must

occur at x = 0. Since k e( )0 102
= =− and lim ( ) ,

x
k x

→± ∞
= 0 the

maximum value is 1 at x = 0.

15. The first derivative ′ = +⎛
⎝⎜

⎞
⎠⎟

f x x( ) cos ,
π
4

has zeros

at x x= =π π
4

5

4
, .

Critical point values: x f x= =π
4

1( )

                                  x f x= = −5

4
1

π
( )

Endpoint values:        x f x= =0
1

2
( )

                                   x f x= =7

4
0

π
( )

Maximum value is 1 at x = π
4

;

minimum value is –1 at x = 5

4

π
;
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15. Continued

 local minimum at 0
1

2
, ;

⎛
⎝⎜

⎞
⎠⎟

local maximum at
7

4
0

π
,

⎛
⎝⎜

⎞
⎠⎟

16. The first derivative ′ =g x x x( ) sec tan has zeros

at x = 0 and x = π and is undefined at x = π
2

.

Since g x x( ) sec= is also undefined at x = π
2

, the critical

points occur only at x = 0 and x = π.
Critical point values:        x g x= =0 1( )

                                          x g x= = −π ( ) 1

Since the range of g x( ) is ( , ] [ , ),−∞ − ∞1 1∪ these values
must be a local minimum and local maximum, respectively.
Local minimum at ( , );0 1 local maximum at ( , )π −1

17. The first derivative ′ = −f x x( ) /2

5
3 5 is never zero but is

undefined at x = 0.
Critical point value:          x f x= =0 0( )

Endpoint value:                x f x= − = −3 3 2 5( ) ( ) /

                                                                   = ≈3 1 5522 5/ .
Since f x( ) > 0 for x ≠ 0, the critical point at x = 0 is a local
minimum, and since f x( ) ( ) /≤ −3 2 5 for –3 ≤ x < 1, the
endpoint value at x = −3 is a global maximum.
Maximum value is 3 2 5/ at x = –3;
minimum value is 0 at x = 0.

18. The first derivative ′ = −f x x( ) /3

5
2 5 is never zero but is

undefined at x = 0.
Critical point value: x = 0         f ( x) = 0

Endpoint value:       x f x= = ≈3 3 1 9333 5( ) .
Since f ( x) < 0 for x < 0 and f ( x) > 0 for x > 0, the critical

point is not a local minimum or maximum. The maximum
value is 33 5 at x = 3.

19.

Minimum value is 1 at x = 2.
20.

To find the exact values, note that ′ = −y x3 22 , which is

zero when x = ± 2

3
. Local maximum at

− +
⎛

⎝
⎜

⎞

⎠
⎟ ≈ −2

3
4

4 6

9
0 816 5 089, ( . , . ); local minimum at

2

3
, ( . , . )4

4 6

9
0 816 2 911−

⎛

⎝
⎜

⎞

⎠
⎟ ≈

21.

To find the exact values, note that

′ = + − = − +y x x x x3 2 8 3 4 22 ( )( ), which is zero when

x = −2 or x = 4

3
. Local maximum at ( , );−2 17 local minimum

at
4

3

41

27
, −⎛

⎝⎜
⎞
⎠⎟

22.

Note that ′ = − + = −y x x x3 6 3 3 12 2( ) , which is zero at
x = 1. The graph shows that the function assumes lower
values to the left and higher values to the right of this point,
so the function has no local or global extreme values.

23.

Minimum value is 0 at x x= − =1 1and at .

24.

To confirm that there are no “hidden” extrema, note that

′ = − − = −
−

−y x x
x

x
( ) ( )

( )
2 2

2 2
1 2

2

1
which is zero only at x = 0

and is undefined only where y is undefined. There is a local
maximum at (0, –1).
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25.

The minimum value is 1 at x = 0.

26.

The actual graph of the function has asymptotes at x = ±1,
so there are no extrema near these values. (This is an
example of grapher failure.) There is a local minimum
at (0, 1).

27.

Maximum value is 2 at x = 1;
minimum value is 0 at x = –1 and at x = 3.

28.

Minimum value is − = −115

2
3at x ;

local maximum at (0, 10);

local minimum at 1
13

2
,

⎛
⎝⎜

⎞
⎠⎟

29.

Maximum value is
1

2
1at x = ;

minimum value is − = −1

2
1at x .

30.

Maximum value is
1

2
0at x = ;

minimum value is − = −1

2
2at x .

31.

Maximum value is 11 at x = 5;
minimum value is 5 on the interval [−3, 2];
local maximum at (−5, 9)

32.

Maximum value is 4 on the interval [5, 7];
minimum value is –4 on the interval [ , ].−2 1

33.

Maximum value is 5 on the interval [3, ∞);
minimum value is –5 on the interval (−∞, –2].

34.

Minimum value is 4 on the interval [–1, 3]

35.

′ = + + = +−y x x x
x

x
2 3 1 3

3
1

2

3
2

5 4

3
/ /( ) ( )
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35. Continued

crit. pt. derivative extremum value

x = − 4

5
0 local max

12

25
10 1 0341 3/ .≈

x = 0 undefined local min 0

36.

′ = + − = −−y x x x x
x

x
2 3 1 3 2

2

3
2

2

3
4

8 8

3
/ /( ) ( )

crit. pt. derivative extremum value

x = −1 0 minimum –3

    x = 0 undefined local max    0

    x = 1 0 minumum –3

37.

′ =
−

− + −

= − + −

−
= −

y x
x

x x

x x

x

i
1

2 4
2 1 4

4

4

4 2

2

2

2 2

2

( ) ( )

( ) xx

x

2

24 −

crit. pt. derivative extremum value

     x = −2 undefined local max     0

x = − 2 0 minimum   –2

     x = 2 0 maximum     2

     x = 2 undefined local min     0

38.

y x
x

x x

x x x

x

x

=
−

− + −

= − + −
−

= − +

2

2 2

1

2 3
1 2 3

4 3

2 3

5 1

i ( )

( ) 22

2 3

x

x−

crit. pt. derivative extremum value

  x = 0 0 minimum 0

x = 12

5
0 local max

144

125
15 4 4621 2/ .≈

   x = 3 undefined minimum 0

39.

′ = − <
>

⎧
⎨
⎩

y
x
x

2 1
1 1

,
,

crit. pt. derivative extremum value

x = 1 undefined minimum 2

40.

′ = − <
− >

⎧
⎨
⎩

y
x

x x
1 0

2 2 0
,

,

crit. pt. derivative extremum value

x = 0 undefined local min 3

x = 1 0 local max 4

41.

′ = − − <
− + >

⎧
⎨
⎩

y
x x
x x

2 2 1
2 6 1

,
,

crit. pt. derivative extremum value

x = −1 0 maximum 5

x = 1 undefined local min 1

     x = 3 0 maximum 5
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42.

      We begin by determining whether ′f x( ) is defined at

x = 1, where

f x
x x x

x x x x
( )

,

,
= − − + ≤

− + >

⎧
⎨
⎪

⎩⎪

1

4

1

2

15

4
1

6 8 1

2

3 2

Left-hand derivative:

lim
( ) ( )

lim
( ) (

h h

f h f

h

h h

→ − → −

+ − =
− + − +

0 0

2
1 1

1

4
1

1

2
1 ))

lim

lim ( )

+ −

= − −

= − −

= −

→ −

→ −

15

4
3

4

4
1

4
4

0

2

0

h
h h

h

h

h

h

11

Right-hand derivative:

lim
( ) ( )

lim
( ) (

h

h

f h f

h
h

→ +

→ +

+ −

= + −
0

0

3

1 1

1 6 1++ + + −

= − −
→ +

h h

h
h h h

hh

) ( )

lim

2

0

3 2

8 1 3

3

= − −

= −
→ +
lim ( )

h
h h

0

2 3 1

1

Thus ′ = − − ≤

− + >
f x

x x

x x x
( )

,

,

1

2

1

2
1

3 12 82 11

⎧
⎨
⎪

⎩⎪

Note that − − = = −1

2

1

2
0 1x xwhen , and

3 12 8 0
12 12 4 3 8

2 3
2

2

x x x− + = =
± −

when
( )( )

( )

= ± = ±12 48

6
2

2 3

3
.

But 2
2 3

3
0 845 1− ≈ <. , so the only critical points occur at

x = –1 and x = + ≈2
2 3

3
3 155. .

crit. pt. derivative extremum value

 x = − 1 0 local max 4

x ≈ 3 155. 0 local max ≈ −3 079.

43. (a) V x x x x( ) = − +160 52 42 3

′ = − + = − −V x x x x x( ) ( )( )160 104 12 4 2 3 202

The only critical point in the interval (0, 5) is at x = 2.
The maximum value of V(x) is 144 at x = 2.

(b) The largest possible volume of the box is 144 cubic
units, and it occurs when x = 2.

44. (a) ′ = − −P x x( ) 2 200 2

The only critical point in the interval (0, ∞) is at x = 10.
The minimum value of P(x) is 40 at x = 10.

(b) The smallest possible perimeter of the rectangle is
40 units and it occurs at x = 10, which makes the
rectangle a 10 by 10 square.

45. False. For example, the maximum could occur at a corner,
where ′f c( ) would not exist.

46. False. Consider the graph below.

x

y

47. E.
d

dx
x x x( )4 6 4 22− + = −

4 2 0
2

2 4 2 2 6 102

− =
=
= − + =

x
x

f ( ) ( ) ( )

48. E. See Theorem 2.

49. B.
d

dx
x x x( )3 26 5 3 6− + = −

     3 6 0

2

2x

x

− =
= ±

50. B.

51. (a) No, since ′ = − −f x x( ) ( ) ,/2

3
2 1 3 which is undefined

at x = 2.

(b) The derivative is defined and nonzero for all x ≠ 2.
Also, f f x x( ) ( ) .2 0 0 2= > ≠and for all

(c) No, f (x) need not have a global maximum because its
domain is all real numbers. Any restriction of f to a
closed interval of the form [a, b] would have both a
maximum value and a minimum value on the interval.

(d) The answers are the same as (a) and (b) with 2 replaced
by a.

52. Note that f x
x x x x

x x x
( )

,

,
= − + ≤ − ≤ <

− − < <

3

3
9 3 0 3

9 3 0

or

orr x ≥
⎧
⎨
⎪

⎩⎪ 3.

Therefore, ′ = − + < − < <
− − < <

f x
x x x

x x
( )

,

,

3 9 3 0 3

3 9 3 0

2

2
or

oor x >
⎧
⎨
⎪

⎩⎪ 3.

(a) No, since the left- and right-hand derivatives at x = 0 are
–9 and 9, respectively.
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52. Continued

(b) No, since the left- and right-hand derivatives at x = 3 are
–18 and 18, respectively.

(c) No, since the left- and right-hand derivatives at x = –3
are  –18 and 18, respectively.

(d) The critical points occur when

′ = ±f x x( ) ( )0 3at = and when ′f x( ) is undefined (at

x = 0 or x = ±3). The minimum value is 0 at x = –3, at

x = 0, and at x = 3; local maxima occur at

( , ) ( , ).− 3 6 3 3 6 3and

53. (a) ′ = + +f x ax bx c( ) 3 22 is a quadratic, so it can have

0, 1, or 2 zeros, which would be the critical points of f.

Examples:

[–3, 3] by [–5, 5]

The function f x x x( ) = −3 3 has two critical points at

x x= − =1 1and .

[–3, 3] by [–5, 5]

The function f x x( ) = −3 1 has one critical point at

x = 0.

[–3, 3] by [–5, 5]

The function f x x x( ) = +3 has no critical points.

(b) The function can have either two local extreme
values or no extreme values. (If there is only one critical
point, the cubic function has no extreme values.)

54. (a) By the definition of local maximum value, there is an
open interval containing c where f x f c( ) ( ),≤ so

f x f c( ) ( ) .− ≤ 0

(b) Because x c→ + , we have (x − c) > 0, and the sign of the
quotient must be negative (or zero). This means the
limit is nonpositive.

(c) Because x c→ − , we have (x − c) < 0, and the sign of the
quotient must be positive (or zero). This means the limit
is nonnegative.

(d) Assuming that ′f c( ) exists, the one-sided limits in
(b) and (c) above must exist and be equal. Since one is
nonpositive and one is nonnegative, the only possible
common value is 0.

(e) There will be an open interval containing c where
f ( x) − f (c) ≥ 0. The difference quotient for the left-hand
derivative will have to be negative (or zero), and the
difference quotient for the right-hand derivative will
have to be positive (or zero). Taking the limit, the left-
hand derivative will be nonpositive, and the right-hand
derivative will be nonnegative. Therefore, the only
possible value for ′f c( ) is 0.

55. (a)

[–0.1, 0.6] by [–1.5, 1.5]

f (0) = 0 is not a local extreme value because in any
open interval containing x = 0, there are infinitely many
points where f (x) = 1 and where f x( ) .= −1

(b) One possible answer, on the interval [0, 1]:

f x x
x

x

x
( ) ( )cos ,

,
= −

−
≤ <

=

⎧
⎨
⎪

⎩⎪

1
1

1
0 1

0 1

This function has no local extreme value at x = 1. Note
that it is continuous on [0, 1].

Section 4.2 Mean Value Theorem
(pp. 196–204)

Quick Review 4.2

  1. 2 6 02x − <

     

2 6

3

3 3

2

2
x

x

x

<
<

− < <
Interval: ( , )− 3 3

  2. 3 6 02x − >

      

3 6

2

2 2

2

2
x

x

x x

>
>
< − >or

Intervals: ( , ) ( , )−∞ − ∞2 2∪

  3. Domain: 8 2 02− ≥x

                      

8 2

4
2 2

2

2
≥
≥

− ≤ ≤

x

x
x

The domain is [–2, 2].

  4. f is continuous for all x in the domain, or, in the interval
[–2, 2].
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   5. f  is differentiable for all x in the interior of its domain,
or, in the interval (–2, 2).

  6. We require x2 1 0− ≠ , so the domain is x ≠ ±1.

  7. f  is continuous for all x in the domain, or, for all x ≠ ±1.

  8. f is differentiable for all x in the domain, or, for all x ≠ ±1.

  9. 7 2 2= − − +( ) C

7 4
3

= +
=

C
C

10. − = + +1 1 2 12( ) ( ) C

− = +
= −

1 3
4

C
C

Section 4.2 Exercises

  1. (a)  Yes.

(b) ′ = + − = +f x
d

dx
x x x( ) 2 2 1 2 2

2 2
2 1

1 0
3

1

2

c

c

+ = − −
−

=

=

( )

.

  2. (a) Yes.

(b) ′ = = −f x
d

dx
x x( ) / /2 3 1 32

3

      

2

3

1 0

1 0
1

8

27

1 3c

c

− = −
−

=

=

/

.

  3. (a) No. There is a verticle tangent at x = 0.

  4. (a) No. There is a corner at x = 1.

  5. (a) Yes.

(b)   ′ = =
−

−f x
d

dx
x

x
( ) sin 1

2

1

1
1

1

2 2

1 1 2

1
2

1 4

2

2

2

−
= − −

− −
=

− =

= − ≈

c

c

c

( / ) ( / )

( )

/

π π π

π
π 00 771. .

  6. (a) Yes.

(b) ′ = − =
−

f x
d

dx
x

x
( ) ln( )1

1

1

 

1

1

3 1

4 2
4 2

3 1
1 2 820

c

c

−
=

−
−

= −
−

+ ≈

ln ln

ln ln
.

  7. (a) No. The function is discontinuous at x = π
2

  8. (a) No. The split function is discontinuous at x = 1

  9. (a) The secant line passes through (0.5, f (0.5)) = (0.5, 2.5)
and (2, f (2)) = (2, 2.5), so its equation is y = 2.5.

(b) The slope of the secant line is 0, so we need to find
c such that ′ =f c( ) .0

               

1 0

1
1

1 2

2

2
− =

=
=
= =

−

−
c

c
c

f c f( ) ( )
The tangent line has slope 0 and passes through (1, 2),
so its equation is y = 2.

10. (a) The secant line passes through (1, f (1)) = (1, 0) and

( , ( )) ( , ),3 3 3 2f = so its slope is

2 0

3 1

2

2

1

2

−
−

= = .

The equation is y x= − +1

2
1 0( )

or y x= −1

2

1

2
, or y x≈ −0 707 0 707. . .

(b) We need to find c such that ′ =f c( ) .
1

2
1

2 1

1

2
2 1 2

1
1

2
3

2
3

2

1

2

1

c
c

c

c

f c f

−
=

− =

− =

=

= ⎛
⎝⎜

⎞
⎠⎟

= =( )
22

The tangent line has slope
1

2
and passes through

3

2

1

2
, .

⎛
⎝⎜

⎞
⎠⎟

Its equation is y x= −⎛
⎝⎜

⎞
⎠⎟

+1

2

3

2

1

2
or

y x= −1

2

1

2 2
, or y x≈ −0 707 0 354. . .

11. Because the trucker’s average speed was 79.5 mph, and by
then Mean Value Theorem, the trucker must have been
going that speed at least once during the trip.

12. Let f (t) denote the temperature indicated after t seconds.
We assume that ′f t( ) is defined and continuous for
0 20≤ ≤t . The average rate of change is10 6. °F/sec.
Therefore, by the Mean Value Theorem, ′ = °f c( ) .10 6 F/sec
for some value of c in [0, 20]. Since the temperature was
constant before t = 0, we also know that ′ = °f ( ) .0 0 F/min
But ′f is continuous, so by the Intermediate Value
Theorem, the rate of change ′f t( ) must have been
10.1°F/sec at some moment during the interval.

13. Because its average speed was approximately 7.667 knots,
and by the Mean Value Theorem, it must been going that
speed at least once during the trip.
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14. The runner’s average speed for the marathon was
approximately 11.909 mph. Therefore, by the Mean Value
Theroem, the runner must have been going that speed at
least once during the marathon. Since the initial speed
and final speed are both 0 mph and the runner’s speed is
continuous, by the Intermediate Value Theorem, the
runner’s speed must have been 11 mph at least twice.

15. (a) f x x′ = −( ) 5 2

Since ′ > −∞⎛
⎝⎜

⎞
⎠⎟

′ = =f x f x x( ) , , ( ) ,0
5

2
0

5

2
on at and

′ <f x( ) 0 on
5

2
, ,∞⎛

⎝⎜
⎞
⎠⎟

we know that f (x) has a local

maximum at x = 5

2
. Since f

5

2

25

4

⎛
⎝⎜

⎞
⎠⎟

= , the local

maximum occurs at the point
5

2

25

4
, .

⎛
⎝⎜

⎞
⎠⎟

(This is also a

global maximum.)

(b) Since ′ >f x( ) 0 on −∞⎛
⎝⎜

⎞
⎠⎟

, , ( )
5

2
f x is increasing on

−∞⎛
⎝⎜

⎤
⎦⎥

, .
5

2

(c) Since ′ <f x( ) 0 on
5

2
, , ( )∞⎛

⎝⎜
⎞
⎠⎟

f x is decreasing on

5

2
, .∞⎡

⎣⎢
⎞
⎠⎟

16. (a) ′ = −g x x( ) 2 1

Since ′ <g x( ) 0 on −∞⎛
⎝⎜

⎞
⎠⎟

′ =, , ( )
1

2
0g x at x = 1

2
, and

′ >g x( ) 0 on
1

2
, ,∞⎛

⎝⎜
⎞
⎠⎟

we know that g (x) has a local

minimum at x = 1

2
.

Since g
1

2

49

4

⎛
⎝⎜

⎞
⎠⎟

= − , the local minimum occurs at the

point
1

2

49

4
, .−⎛

⎝⎜
⎞
⎠⎟

(This is also a global minimum.)

(b) Since ′ > ∞⎛
⎝⎜

⎞
⎠⎟

g x g x( ) , , ( )0
1

2
on is increasing on

1

2
, .∞⎡

⎣⎢
⎞
⎠⎟

(c) Since ′ < −∞⎛
⎝⎜

⎞
⎠⎟

g x g x( ) , , ( )0
1

2
on is decreasing on

−∞⎛
⎝⎜

⎤
⎦⎥

, .
1

2

17. (a) ′ = −h x
x

( )
2
2

Since ′h x( ) is never zero is undefined only where h(x) is
undefined, there are no critical points. Also, the domain
( , ) ( , )−∞ ∞0 0∪ has no endpoints. Therefore, h(x) has
no local extrema.

(b) Since ′h x( ) is never positive, h x( ) is not increasing on
any interval.

(c) Since ′h x( ) < 0 on ( , ) ( , ),−∞ ∞0 0∪ h(x) is decreasing on
(−∞, 0) and on (0, ∞).

18. (a) ′ = −k x
x

( )
2
3

Since ′k x( ) is never zero and is undefined only where
k x( ) is undefined, there are no critical points. Also, the
domain ( , ) ( , )−∞ ∞0 0∪ has no endpoints. Therefore,
k x( ) has no local extrema.

(b) Since ′ > −∞k x k x( ) ( , ), ( )0 0on is increasing on

( , ).−∞ 0

(c) Since ′ < ∞k x k x( ) ( , ), ( )0 0on is decreasing on ( , ).0 ∞

19. (a) ′ =f x e x( ) 2 2

Since ′f x( ) is never zero or undefined, and the domain

of f x( ) has no endpoints, f x( ) has no extrema.

(b) Since ′f x( ) is always positive, f x( ) is increasing on

( , ).−∞ ∞

(c) Since ′f x( ) is never negative, f x( ) is not decreasing on

any interval.

20. (a) ′ = − −f x e x( ) . .0 5 0 5

Since ′f x( ) is never zero or undefined, and the domain
of f x( ) has no endpoints, f x( ) has no extrema.

(b) Since ′f x( ) is never positive, f x( ) is not increasing on

any interval.

(c) Since ′f x( ) is always negative, f x( ) is decreasing on

( , ).−∞ ∞

21. (a) ′ = −
+

y
x

1

2 2

In the domain − ∞⎡⎣ ) ′2, , y is never zero and is undefined
only at the endpoint x = −2. The function y has a local
maximum at (–2, 4). (This is also a global maximum.)

(b) Since ′y is never positive, y is not increasing on any

interval.

(c) Since ′y is negative on ( , ),− ∞2 y is decreasing on

− ∞⎡⎣ )2, .
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22. (a) ′ = − = + −y x x x x x4 20 4 5 53 ( )( )

The function has critical points at x x= − =5 0, , and

x = 5. Since y ′ < 0 on ( , )−∞ − 5 and ( , )0 5 and

′ >y 0 on ( 5, 0)− and ( 5, ),∞ the points at x = ± 5

are local minima and the point at x = 0 is a local
maximum. Thus, the function has a local maximum at

(0, 9) and local minima at ( , ) ( , ).− − −5 16 5 16and

(These are also global minima.)

(b) Since ′ > − ∞y y0 5on , 0) and ( 5( , ), is increasing on

[ , ] [ , ).− ∞5 0 5and

(c) Since ′ > − ∞ −y y0 on ( , 5) and (0, 5), is decreasing

on ( , ] [ , ].−∞ − 5 0 5and

23.

(a) ′ =
−

− + −f x x
x

x( ) ( )i
1

2 4
1 4

        = − +
−

3 8

2 4

x

x

The local extrema occur at the critical point x = 8

3
and at

the endpoint x = 4. There is a local (and absolute)

maximum at
8

3

16

3 3
,

⎛
⎝⎜

⎞
⎠⎟

or approximately (2.67, 3.08),

and a local minimum at (4, 0).

(b) Since ′ > −∞⎛
⎝⎜

⎞
⎠⎟

f x f x( ) , , ( )0
8

3
on is decreasing on

−∞ ⎤
⎦⎥

⎛
⎝⎜

, .
8

3

(c) Since ′ < ⎛
⎝⎜

⎞
⎠⎟

f x f x( ) , , ( )0
8

3
4on is decreasing on

8

3
4, .

⎡
⎣⎢

⎤
⎦⎥

24.

(a) ′ = + + = +−g x x x x
x

x
( ) ( ) ( )/ /

/
1 3 2 3

2 3
1

1

3
8

4 8

3

The local extrema can occur at the critical points x = –2
and x = 0, but the graph shows that no extrema occurs at
x = 0. There is a local (and absolute) minimum at

( , )− −2 6 23 or approximately ( , . ).− −2 7 56

(b) Since ′ >g x( ) 0 on the intervals ( , )−2 0 and (0, ∞), and

g(x) is continuous at x = 0, g(x) is increasing on [–2, ∞).

(c) Since ′ <g x( ) 0 on the interval (–∞, –2), g(x) is

decreasing on (−∞, –2].

25.

(a) ′ =
+ − − −

+
= −

+
h x

x x x

x

x

x
( )

( )( ) ( )( )

( ) ( )

2

2 2

2

2

4 1 2

4

4

4 22

=
+ −

+
( )( )

( )

x x

x

2 2

42 2

The local extrema occur at the critical points, x = ±2.

There is a local (and absolute) maximum at −⎛
⎝⎜

⎞
⎠⎟

2
1

4
,

and a local (and absolute) minimum at 2
1

4
, .−⎛

⎝⎜
⎞
⎠⎟

(b) Since ′ > −∞ −h x( ) ( , )0 2on and (2, ∞), h(x) is

increasing on (−∞, –2] and [2, ∞).

(c) Since ′ < −h x h x( ) ( , ), ( )0 2 2on is decreasing on [–2, 2].

26.

(a) ′ =
− −

−
= − +

−
k x

x x x

x

x

x
( )

( )( ) ( )

( ) ( )

2

2 2

2

2 2

4 1 2

4

4

4

Since k′ (x) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Since there
are no critical points and the domain includes no
endpoints, k(x) has no local extrema.

(b) Since ′k x( ) is never positive, k(x) is not increasing on

any interval.

(c) Since ′k x( ) is negative wherever it is defined, k(x) is

decreasing on each interval of its domain; on (–∞, –2),
(–2, 2), and (2, ∞).
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27.

(a) ′ = − +f x x x( ) sin3 2 22

Note that 3x 2 – 2 > 2 for ⏐x⏐ ≥ 1.2 and ⏐2 sin x⏐≤ 2 for
all x, so ′ >f x( ) 0 for ⏐x⏐ ≥ 1.2. Therefore, all critical
points occur in the interval (–1.2, 1.2), as suggested by
the graph. Using grapher techniques, there is a local
maximum at approximately (–1.126, –0.036), and a
local minimum at approximately (0.559, –2.639).

(b) f (x) is increasing on the intervals (−∞, –1.126] and
[0.559, ∞), where the interval endpoints are
approximate.

(c) f (x) is decreasing on the interval [–1.126, 0.559], where
the interval endpoints are approximate.

28.

(a) g′(x) = 2 – sin x
Since 1 ≤ g′(x) ≤ 3 for all x, there are no critical points.
Since there are no critical points and the domain has no
endpoints, there are no local extrema.

(b) Since g′(x) > 0 for all x, g(x) is increasing on (−∞, ∞).

(c) Since g′(x) is never negative, g(x) is not decreasing on
any interval.

29. f x
x

C( ) = +
2

2

30. f x x C( ) = +2

31. f x x x x C( ) = − + +3 2

32. f x x C( ) cos= − +

33. f x e Cx( ) = +

34. f x x C( ) ln ( )= − +1

35.   f x
x

C x( ) ,= + >1
0

f

C

C

f x
x

x

( )

( ) ,

2 1
1

2
1

1

2
1 1

2
0

=

+ =

=

= + >

36.      f x x C( ) /= +1 4

f

C
C
C

f x x

( )

( )

/

/

1 2

1 2
1 2

3

3

1 4

1 4

= −
+ = −
+ = −

= −
= −

37.                f x x C( ) ln( )= + +2

f
C
C
C

f x x

( )
ln( )

( ) ln( )

− =
− + + =

+ =
=
= + +

1 3
1 2 3

0 3
3

2 3

38. f x x x x C( ) sin= + − +2

f
C
C

f x x x x

( )

( ) sin

0 3
0 3

3
32

=
+ =

=
= + − +

39. Possible answers:

(a)

[–2, 4] by [–2, 4]

(b)

[–1, 4] by [0, 3.5]

(c)

[–1, 4] by [0, 3.5]

40. Possible answers:

(a)

(b)
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40. Continued

(c)

(d)

41. One possible answer:

[–3, 3] by [–15, 15]

42. One possible answer:

43. (a) Since v t v t t C′( ) . , ( ) . .= = +1 6 1 6 But v( ) ,0 0= so C = 0
and v(t) = 1.6t. Therefore, v(30) = 1.6(30) = 48. The
rock will be going 48 m/sec.

(b) Let s(t) represent position.
Since ′ = = = +s t v t t s t t D( ) ( ) . , ( ) . .1 6 0 8 2 But s(0) = 0,
so D = 0 and s t t( ) . .= 0 8 2 Therefore,
s( ) . ( ) .30 0 8 30 7202= = The rock travels 720 meters in
the 30 seconds it takes to hit bottom, so the bottom of
the crevasse is 720 meters below the point of release.

(c) The velocity is now given by v(t) = 1.6t + C, where
v(0) = 4. (Note that the sign of the initial velocity is the
same as the sign used for the acceleration, since both act
in a downward direction.) Therefore, v(t) = 1.6t + 4,
and s t t t D( ) . ,= + +0 8 42 where s(0) = 0 and so D = 0.
Using s t t t( ) .= +0 8 42 and the known crevasse depth
of 720 meters, we solve s(t) = 720 to obtain the
positive solution t ≈ 27 604. , and so v(t) = v(27.604) =
1.6(27.604) + 4 ≈ 48.166. The rock will hit bottom after
about 27.604 seconds, and it will be going about
48.166 m/sec.

44. (a) We assume the diving board is located at s = 0 and the
water at s = 0, so that downward velocities are positive.
The acceleration due to gravity is 9.8 m/sec2, so

′ =v t( ) .9 8 and v(t) = 9.8t + C. Since v(0) = 0, we have

v(t) = 9.8t. Then the position is given by s(t) where

′ = = = +s t v t t s t t D( ) ( ) . , ( ) . .9 8 4 9 2so Since s(0) = 0, we

have s t t( ) . .= 4 9 2 Sloving s(t) = 10 gives

t2 10

4 9

100

49
= =

.
, so the positive solution is t = 10

7
. The

velocity at this time is v
10

7
9 8

10

7
14

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=. m/sec.

(b) Again v(t) = 9.8t + C, but this time v(0) = –2 and so
v(t) = 9.8t – 2. The ′ = −s t t( ) . ,9 8 2 so s(t) =

4.9t 2 – 2t + D. Since s(0) = 0, we have s(t) =

4.9t 2 – 2t. Sloving s(t) = 10 gives the positive solution

t = + ≈2 10 2

9 8
1 647

.
. sec.

The velocity at this time is

v
2 10 2

9 8
9 8

2 10 2

9 8
2 10 2

+⎛

⎝
⎜

⎞

⎠
⎟ = +⎛

⎝
⎜

⎞

⎠
⎟ − =

.
.

.
m/seec or

about 14.142 m/sec.

45. Because the function is not continuous on [0, 1]. The
function does not satisfy the hypotheses of the Mean Value
Theorem, and so it need not satisfy the conclusion of the
Mean Value Theorem.

46. Because the Mean Value Theorem applies to the function
y = sin x on any interval, and y = cos x is the derivative of
sin x. So, between any two zeros of sin x, its derivative,
cos x, must be zero at least once.

47. f ( x) must be zero at least once between a and b by the
Intermediate Value Theorem. Now suppose that f ( x) is zero
twice between a and b. Then by the Mean Value
Theorem, ′f x( ) would have to be zero at least once between
the two zeros of f (x), but this can’t be true since we are
given that ′ ≠f x( ) 0 on this interval. Therefore, f ( x) is zero
once and only once between a and b.

48. Let f x x x( ) .= + +4 3 1 Then f ( x) is continuous and
differentiable everywhere. ′ = +f x x( ) ,4 33 which is never
zero between x = –2 and  x = –1. Since f (–2) = 11 and
f (–1) = –1, exercise 47 applies, and f ( x) has exactly one
zero between x = –2 and x = –1.

49. Let f ( x) = x + ln (x + 1). Then f x( ) is continuous and

differentiable everywhere on [0, 3]. ′ = +
+

f x
x

( ) ,1
1

1
which

is never zero on [0, 3]. Now f (0) = 0, so x = 0 is one
solution of the equation. If there were a second solution,
f ( x) would be zero twice in [0, 3], and by the Mean Value
Theorem, ′f x( ) would have to be zero somewhere between
the two zeros of f x( ) .But this can’t happen, since ′f x( ) is
never zero on [0, 3]. Therefore, f x( ) = 0 has exactly one
solution in the interval [0, 3].
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50. Consider the function k(x) = f (x) − g(x). k(x) is continuous
and differentiable on [a, b], and since
k(a) = f (a) – g(a) = 0 and k(b) = f (b) − g(b) = 0, by the
Mean Value Theorem, there must be a point c in (a, b)
where ′ =k c( ) .0 But since ′ = ′ − ′k c f c g c( ) ( ) ( ), this means
that ′ − ′f c g c( ) ( ), and c is a point where the graphs of f and
g have parallel or identical tangent lines.

    (–1, 1) by [–2, 2]

51. False. For example, the function x3 is increasing on
(–1, 1), but ′ =f ( ) .0 0

52. True. In fact, f is the increasing on [a, b] by Corollary to the
Mean Value Theorem.

53. A. ′ =
−

= −f x( ) .

1

2
1

3

3

2π π

54. B. ′ = −
−

f x
f f

( )
( ) ( )4 0

4 0

              = −
−

3 78 2980 96

4 0

. .

              = −744 30. , negative slope.

55. E.
d

dx
x( )2 10−

    = =2

2

1

x x
.

56. D. x3 5 is not differentiable at x = 0.

57. (a) Increasing: [–2, –1.3] and [1.3, 2];
decreasing: [–1.3, 1.3];
local max: x ≈ −1 3.
local min: x ≈ 1 3.

(b) Regression equation: y x= −3 52

[–2.5, 2.5] by [–8, 10]

(c) Since ′ = −f x x( ) ,3 52 we have f x x x C( ) .= − +3 5

But f (0) = 0, so C = 0. Then f x( ) = x 3 – 5x.

58. (a) Toward: 0 < t < 2 and 5 < t < 8; away: 2 < t < 5

(b) A local extremum in this problem is a time/place where
Priya changes the direction of her motion.

(c) Regression equation:

y x x x= − + − +0 0820 0 9163 2 5126 3 37793 2. . . .

(d) Using the unrounded values from the regression
equation, we obtain

′ = − + −f t t t( ) . . . .0 2459 1 8324 2 51262 According to the
regression equation, Priya is moving toward the motion
detector when ′ < < < < <f t t t( ) ( . . ),0 0 1 81 5 64 8and
and away from the detector when

′ > < <f t t( ) ( . . ).0 1 81 5 64

59.
f b f a

b a
b a
b a ab

( ) ( )−
−

=
−

−
= −

1 1
1

′ = − − = − =f c
c c ab

c ab( ) , .
1 1 1
2 2

2so and

Thus, c ab= .

60.
f b f a

b a

b a

b a
b a

( ) ( )−
−

= −
−

= +
2 2

′ = = + = +
f c c c b a c

a b
( ) , .2 2

2
so and

61. By the Mean Value Theorem, sin b – sin a = (cos c)(b – a)
for some c between a and b. Taking the absolute value of

both sides and using cosc ≤ 1 gives the result.

62. Apply the Mean Value Theorem to f on [a, b].

Since f b f a
f b f a

b a
( ) ( ),

( ) ( )< −
−

 is negative, and

hence ′f x( ) must be negative at some point between

a and b.

63. Let f ( x) be a monotonic function defined on an interval D.
For any two values in D, we may let x be the smaller value
and let x be the larger value, so x x1 2< . Then either
f x f x( ) ( )1 2< (if f is increasing), or f x f x( ) ( )1 2> (if f  is

decreasing), which means f x f x( ) ( ).1 2≠ Therefore, f  is
one-to-one.

Section 4.3 Connecting f ′ and f ″ with the
Graph of f (pp. 205–218)

Exploration 1 Finding f from ′′f

  1. Any function f x x x C( ) = − +4 34 where C is a real number.

For example, let C = 0, 1, 2. Their graphs are all vertical
shifts of each other.

  2. Their behavior is the same as the behavior of the function
f of Example 8.
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Exploration 2 Finding f from ′f and ′′f

  1. f has an absolute maximum at x = 0 and an absolute
minimum of 1 at x = 4. We are not given enough
information to determine f (0).

  2. f has a point of inflection at x = 2.

  3. 

Quick Review 4.3

  1.            x2 9 0− <
( )( )x x+ − <3 3 0

Intervals x < −3 − < <3 3x 3 < x

Sign of
( )( )x x+ −3 3 + – +

Solution set: (–3, 3)

  2.             x x3 4 0− >
x x x( )( )+ − >2 2 0

Intervals x < −2 − < <2 0x 0 2< <x 2 < x

Sign of
x x x( )( )+ −2 2 – + – +

Solution set: ( 2, 0) (2, )− ∞∪

  3. f : all reals

′f :  all reals, since ′ = +f x xe ex x( )

  4. f :  all reals

′f : x ≠ 0,  since ′ = −f x x( ) /3

5
2 5

  5. f :  x ≠ 2

′f :  x ≠ 2, since ′ =
− −

−
= −

−
f x

x x

x x
( )

( )( ) ( )( )

( ) ( )

2 1 1

2

2

22 2

  6. f : all reals

f ′:  x ≠ 0, since ′ = −f x x( ) /2

5
3 5

  7. Left end behavior model: 0
Right end behavior model: −x ex2

Horizontal asymptote: y = 0

  8. Left end behavior model: x e x2 −

Right end behavior model: 0
Horizontal asymptote: y = 0

  9. Left end behavior model: 0
Right end behavior model: 200
Horizontal asymptote: y – 0, y = 200

10. Left end behavior model: 0
Right end behavior model: 375
Horizontal asymptotes: y = 0, y = 375

Section 4.3 Exercises

  1. ′ = −y x2 1

Intervals x < 1

2
x > 1

2

Sign of ′y − +

Behavior of y Decreasing Increasing

Graphical support:

Local (and absolute) minimum at
1

2

5

4
,−⎛

⎝⎜
⎞
⎠⎟

  2. ′ = − + = − −y x x x x6 12 6 22 ( )

Intervals x < 0 0 2< <x 2 < x

Sign of ′y − + −

Behavior of y Decreasing Increasing Decreasing

Graphical support:

Local maximum: (2, 5);
local minimum: (0, –3)

  3. ′ = − = − +y x x x x x8 8 8 1 13 ( ) ( )

Intervals x < −1 − < <1 0x 0 1< <x 1 < x

Sign of ′y − + − +

Behavior
of y

Decreasing Increasing Decreasing Increasing

Graphical support:

Local maximum: (0, 1);
local (and absolute) minima: (–1, –1) and (1, –1)
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  4. ′ = − + = −⎛
⎝⎜

⎞
⎠⎟

−y xe x e e
x

x x x1 2 1 1 1
1/ / /( )

Intervals x < 0 0 1< <x 1 < x

Sign of ′y + − +

Behavior of y Increasing Decreasing Increasing

Graphical support:

Local minimum: (1, e)

  5. ′ =
−

− + − = −

−
y x

x
x x

x

x

1

2 8
2 8 1

8 2

82

2
2

2
( ) ( ( )

Intervals − < < −8 2x − < <2 2x 2 8< <x

Sign of ′y − + −

Behavior of y Decreasing Increasing Decreasing

Graphical support:

Local maxima: ( , )− 8 0 and (2, 4);

local minima: (–2, –4) and ( , )8 0

Note that the local extrema at x = ± 2 are also absolute
extrema.

  6. ′ = − <
>

⎧
⎨
⎩

y
x x

x x
2 0

2 0
,

,

Intervals x < 0 x > 0

Sign of ′y + +

Behavior of y Increasing Increasing

Graphical support:

Local minimum: (0, 1)

  7. ′ = + + = + +y x x x x12 42 36 6 2 2 32 ( ) ( )

Intervals x < −2 − < < −2
3

2
x − <3

2
x

Sign of ′y + − +

Behavior of y Increasing Decreasing Increasing

′′ = + = +y x x24 42 6 4 7( )

Intervals x < − 7

4
− <7

4
x

Sign of ′y − +

Behavior of y Concave down Concave up

Graphical support:

(a) − ∞⎛
⎝⎜

⎞
⎠⎟

7

4
,

(b) −∞ −⎛
⎝⎜

⎞
⎠⎟

,
7

4

  8. ′ = − + −y x x4 12 43 2

Using grapher techniques, the zeros of ′y are x ≈ –0.53,

x ≈ 0.65, and x ≈ 2.88.

Intervals x < −0 53. − < <0 53 0 65. .x 0 65 2 88. .< <x 2 88. < x

Sign of ′y + – + –

Behavior of y Increasing Decreasing Increasing Decreasing

′′ = − + = − −y x x x x12 24 12 22 ( )

Intervals x < 0 0 2< <x 2 < x

Sign of ′′y − + −

Behavior of y Concave down Concave up Concave down

Graphical support:

(a) (−∞, –0.53] and [0.65, 2.88]

(b) [–0.53, 0.65] and [2.88, ∞)

(c) (0, 2)

(d) (−∞, 0) and (2, ∞)
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  8. Continued

(e) Local maxima: (–0.53, 2.45) and (2.88, 16.23); local
minimum: (0.65, –0.68)
Note that the local maximum at x ≈ 2.88 is also an
absolute maximum.

(f) (0, 1) and (2, 9)

  9. ′ = −y x
2

5
4 5/

Intervals x < 0 0 < x

Sign of ′y + +

Behavior of y Increasing Increasing

′′ = − −y x
8

25
9 5/

Intervals x < 0 0 < x

Sign of ′′y + −

Behavior of y Concave up Concave down

Graphical support:

(a) (−∞, ∞)

(b) None

(c) (−∞, 0)

(d) (0, ∞)

(e) None

(f) (0, 3)

10. ′ = − −y x
1

3
2 3/

Intervals x < 0 0 < x

Sign of ′y − −

Behavior of y Decreasing Decreasing

′′ = −y x
2

9
5 3/

Intervals x < 0 0 < x

Sing of ′′y − +

Behavior of y Concave down Concave up

Graphical support:

(a) ( , )0 ∞

(b) ( , )−∞ 0

11. ′ = <
− >

⎧
⎨
⎩

y
x

x x
2 1

2 1
,

,

Intervals x < 1 1 < x

Sign of ′y + −

Behavior of y Increasing Decreasing

′′ = <
− >

⎧
⎨
⎩

y
x
x

0 1
2 1
,

,

Intervals x < 1 1 < x

Sing of ′′y 0 −

Behavior of y Linear Concave down

Graphical support:

(a) None

(b) ( , )1 ∞

12. ′ =y ex

′′ =y ex

Since ′y and ′′y are both positive on the entire domain, y is
increasing and concave up on the entire domain.

Graphical support:

(a) ( , )0 2π

(b) None
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13. y xex=

′ = +y e xex x

Intervals x < –1 x > –1

Sign of ′y − +

Behavior of y Decreasing Increasing

′′ = +y e xex x2

Intervals x < –2 x > –2

Sign of ′′y − +

Behavior of y Concave down Concave up

− −⎛
⎝⎜

⎞
⎠⎟

2
2
2

,
e

14. y x x= −9 2

′ = − −
−

=

= ±

y x
x

x

x

9
9

0

3 2

2

2
2

2

Intervals − < < −3
3 2

2
x − < <3 2

2

3 2

2
x

3 2

2
3< <x

Sign
of ′y

− + −

Behavior
of y

Decreasing Increasing Decreasing

′′ = −
−

+
−

=

′′ = =

y
x

x

x

x
y x

3

9 9
0

0 0

2 1 2

3

2 3 2( ) ( )/ /

at

Intervals –3 < x < 0 0 < x < 3

Sign of ′′y + −

Behavior of y Concave up Concave down

15. ′ =
+

y
x

1

1 2

since ′y > 0 for all x, y is always increasing:

′′ = + = − + = −
+

− −y
d

dx
x x x

x

x
( ) ( ) ( )

( )
1 1 2

2

1
2 1 2 2

2 2

Intervals x < 0 0 < x

Sign of ′′y + −

Behavior of y Concave up Concave down

(0, 0)

16. y x x= −3 4( )

′ = −y x x12 42 3

Intervals x < 0 0 < x < 3 x > 3

Sign of ′y + + −

Behavior of y Increasing Increasing Decreasing

′′ = −y x x24 12 2

Intervals x < 0 0 < x < 2 x > 2

Sign of ′′y − + −

Behavior of y
Concave

down
Concave

up
Concave

down

( , ) ( , )0 0 2 16and

17. y x x x x= − = −1 3 4 3 1 34 4/ / /( )

′ = − = −−y x x
x

x

4

3

4

3

4 4

3
1 3 2 3

2 3
/ /

/

Intervals x < 0 0 < x < 1 1 < x

Sign of ′y − − +

Behavior of y Decreasing Decreasing Increasing

′′ = + = +− −y x x
x

x

4

9

8

9

4 8

9
2 3 5 3

5 3
/ /

/

Intervals x < – 2 –2 < x < 0 0 < x

Sign of y″ + − +

Behavior of y
Concave

up
Concave

down
Concave

up

( , ) ( , . ) ( , )− ≈ −2 6 2 2 7 56 0 03 and

18. y x x= +1 2 3/ ( )

′ = + +−y x x x
1

2
31 2 1 2/ /( )  y is always increasing, so there are

no critical points for ′y .

′′ = − − =y
x

x

x

1 3

4
0

1 2 3 2( ) ( )/ /

Intervals 0 < x < 1 x > 1

Sing of ′′y + −

Behavior of y Concave up Concave down

(1, 4)

19. We use a combination of analytic and grapher techniques to
solve this problem. Depending on the viewing window
chosen, graphs obtained using NDER may exhibit strange
behavior near x = 2 because, for example,
NDER ( , ) , ,y 2 1 000 000≈ while ′y is actually undefined at

x = 2. The graph of y
x x x

x
= − + −

−

3 22 1

2
is shown below.
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19. Continued

′ =
− − + − − + −

−

=

y
x x x x x x

x
x

( )( ) ( )( )

( )

2 3 4 1 2 1 1

2
2

2 3 2

2

33 2

2

8 8 1

2

− + −
−
x x

x( )

The graph of ′y is shown below.

The zeros of ′y are x x≈ ≈0 15 1 40. , . , and x ≈ 2 45. .

Intervals x < 0.15 0.15 < x < 1.40 1.40 < x < 2 2 < x < 2.45 2.45 < x

Sign
of y′

− + − − +

Behavior
of y

Decreasing Increasing Decreasing Decreasing Increasing

′′ =
− − + − − + − −

y
x x x x x x x( ) ( ) ( )( )(2 6 16 8 2 8 8 1 2 22 2 3 2 ))

( )
( )( ) ( )

(

x
x x x x x x

x

−

=
− − + − − + −

2
2 6 16 8 2 2 8 8 1

4

2 3 2

−−

= − + −
−

=
− − +

2
2 12 24 14

2
2 1 5 7

3

3 2

3

2

)

( )
( )( )

x x x

x
x x x

(( )x − 2 3

The graph of ′′y is shown below.

Note that the discriminant of x x2 5 7− + is

( ) ( )( ) ,− − = −5 4 1 7 32 so the only solution of ′′y = 0 is x = 1.

Intervals x < 1 1 < x < 2 2 < x

Sign of ′′y + − +

Behavior of y
Concave

up
Concave

down
Concave

up

(1, 1)

20. ′ =
+ −

+
= − +

+
y

x x x

x

x

x

( )( ) ( )

( ) ( )

2

2 2

2

2 2

1 1 2

1

1

1

Intervals x < – 1 – 1 < x < 1 1 < x

Sign of ′y − + −

Behavior of y Decreasing Increasing Decreasing

′′ =
+ − − − + +

+
y

x x x x x

x

( ) ( ) ( )( )( )( )

( )

2 2 2 2

2

1 2 1 2 1 2

1 44

2 2

2 3

3

2

1 2 4 1

1
2 6

1

=
+ − − − +

+

= −
+

( )( ) ( )

( )

(

x x x x

x
x x

x ))

( )

( )3

2

2 3

2 3

1
= −

+
x x

x

Intervals x < − 3 − < <3 0x 0 3< <x 3 < x

Sign
of ′′y

− + − +

Behavior
of y

Concave
down

Concave up
Concave

down
Concave up

      (0, 0), 3
3

4
, ,

⎛

⎝
⎜

⎞

⎠
⎟ and − −

⎛

⎝
⎜

⎞

⎠
⎟3

3

4
,

21. (a) Zero: x = ±1;
positive: (–∞, –1) and (1, ∞);
negative: (–1, 1)

(b) Zero: x = 0;
positive: (0, ∞);
negative: (−∞, 0)

22. (a) Zero: x ≈ 0, ± 1.25;
positive: (–1.25, 0) and (1.25, ∞);
negative: (–∞, –1.25) and (0, 1.25)

(b) Zero: x ≈ ± 0.7;
positive: (–∞, –0.7) and (0.7, ∞);
negative: (–0.7, 0.7)

23. (a) (–∞, –2] and [0, 2]

(b) [–2, 0] and [2, ∞)

(c) Local maxima: x = –2 and x = 2;
local minimum: x = 0

24. (a) [–2, 2]

(b) (–∞, –2] and [2, ∞)

(c) Local maximum: x =  2;
local minimum: x = –2

25. (a) v t x t t( ) ( )= ′ = −2 4

(b) a t v t( ) ( )= ′ = 2

(c) It begins at position 3 moving in a negative direction. It
moves to position –1 when t = 2, and then changes
direction, moving in a positive direction thereafter.

26. (a) v t x t t( ) ( )= ′ = − −2 2

(b) a t v t( ) ( )= ′ = −2

(c) In begins at position 6 and moves in the negative
direction thereafter.

27. (a) v t x t t( ) ( )= ′ = −3 32

(b) a t v t t( ) ( )= ′ = 6
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27. Continued

(c) It begins at position 3 moving in a negative direction. It
moves to position 1 when t = 1, and then changes
direction, moving in a positive direction thereafter.

28. (a) v t x t t t( ) ( )= ′ = −6 6 2

(b) a t v t t( ) ( )= ′ = −6 12

(c) It begins at position 0. It starts moving in the positive
direction until it reaches position 1 when t = 1, and then
it changes direction. It moves in the negative direction
thereafter.

29. (a) The velocity is zero when the tangent line is horizontal,
at approximately t  =  2.2, t =  6 and t  = 9.8.

(b) The acceleration is zero at the inflection points,
approximately t t= =4 8, and t =11.

30. (a) The velocity is zero when the tangent line is horizontal,
at approximately t t= − =0 2 4. , , and t = 12.

(b) The acceleration is zero at the inflection points,
approximately t t t t= = = =1 5 5 2 8 11. , . , , , and t = 13.

31. Some calculators use different logistic regression equations,
so answers may vary.

(a) y
e t=

+ −
12655 179

1 12 871 0 0326

.

. .

(b)

[0, 140] by [–200, 12000]

(c) y
e

=
+

=−
12655 179

1 12 871
12 209 870

0 0326 180

.

.
, ,

. ( )
.. (This is

remarkably close to the 2000 census number of
12,281,054.)

(d) The second derivative has a zero at about 78, indicating
that the population was growing fastest in 1898. This
corresponds to the inflection point on the regression
curve.

(e) The regression equation predicts a population limit of
about 12,655,179.

32. Some calculators use different logistic regression equations,
so answers may vary.

(a) y
e t=

+ −
28984386 288

1 49 252 0 851

.

. .

(b)

[0, 9] by [–3.1 �106, 3.2 �107 ]

(c) The zero of the second derivative is about 4.6, which
puts the fastest growth during 1981. This corresponds to
the inflection point on the regression curve.

(d) The regression curve predicts that cable subscribers will
approach a limit of 28,984,386 + 12,168,450 subscribers
(about 41 million).

33. y x x= − +3 53

′ = −
′′ = −
′ = ±

y x
y x
y

3 3
6

0 1

2

at .

′′ − >y ( )1 0 and ′′ <y ( ) ,1 0 so there is a local minimum at

(–1, 3) and a local maximum at (1,7).

34. y x x= − +5 80 100

′ = −
′′ =
′ = ±

y x

y x
y

5 80

20
0

4

3

at 2

′′ − <y ( )2 0 and ′′ >y ( ) ,2 0 so there is a local maximum at

(–2, 228) and a local minimum at (2, –28).

35. y x x

y x x
y x
y

= + −
′ = +
′′ = +
′ = −

3 2

2
3 2

3 6
6 6
0 2 0at and ..

( ) , ( ) ,′′ − < ′′ >y y2 0 0 0

so there is a local maximum at (–2, 2) and a local minimum
at (0, –2).

36. y x x x= − + +3 25 60 205 3

at and

′ = − +
′′ = −
′ = ± ±

y x x

y x x
y

15 75 60

60 150
0 1 2

4 2

3

..
( ) , ( )

( ) , ( ) ;
′′ − < ′′ − >

′′ < ′′ >
y y

y y
2 0 1 0
1 0 2 0and

so there are local maxima at (–2, 4) and (1, 58), and there
are local minima at (–1, –18) and (2, 36).

37. y xex=

′ = +
′′ = +
′ = −

y x e

y x e
y

x

x

( )

( )

1

2
0 at 1.

′′y  (−1) > 0, so there is a local minimum at ( , / ).− −1 1 e

38. y xe

y x e

y x e
y

x

x

x

=
′ = −
′′ = −
′ =

−

−

−
( )

( )

1

2
0 1at

′′ <y ( ) ,1 0 so there is a local maximum at (1,, 1/e).

39. ′ = − −y x x( ) ( )1 22

Intervals x < 1 1 < x < 2 2 < x

Sign of ′y − − +

Behavior of y Decreasing Decreasing Increasing
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39. Continued

         
′′ = − + − −

= − − +
y x x x

x x x
( ) ( ) ( )( )( )
( )[( ) (

1 1 2 2 1
1 1 2

2

−−
= − −

2
1 3 5

)]
( )( )x x

Intervals x < 1 1
5

3
< <x

5

3
< x

Sign of y″ + − +

Behavior of y
Concave

up
Concave

down
Concave

up

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x = 2.

(c) There are points of inflection at x = 1 and at x = 5

3
.

40. y′ = (x − 1) (x − 2)(x − 4)

Intervals x < 1 1 < x < 2 2 < x < 4 4 < x

Sign of y′ + + − +

Behavior
of y

Increasing Increasing Decreasing Increasing

′′ = − − +

= − − + −

y
d

dx
x x x

x x x

[( ) ( )]

( ) ( ) (

1 6 8

1 2 6 6

2 2

2 2 xx x

x x x x x

+ −
= − − − + − +

8 2 1

1 1 2 6 2 6 82
)( )( )

( )[( )( ) ( )]

== − − +
= − − +

( )( )

( )( )

x x x

x x x

1 4 20 22

2 1 2 10 11

2

2

Note that the zeros of ′′y are x = 1 and

x =
± −

= ±

= ± ≈

10 10 4 2 11

4

10 12

4
5 3

2
1 63 3 37

2 ( )( )

. . .or

The zeros of ′′y can also be found graphically, as shown.

Intervals x < 1 1 < x < 1.63 1.63 < x < 3.37 3.37 < x

Sign
of ′′y − + − +

Behavior
of y

Concave
down

Concave up Concave down
Concave

up

(a) Local maximum at x = 2

(b) Local minimum at x = 4

(c) Points of inflection at x = 1, at x ≈ 1.63, and at x ≈ 3.37.

41. y

x

y = f(x)
y = f ′(x)

y = f ′′(x)

P

42.

43. No f must have a horizontal tangent at that point, but f could
be increasing (or decreasing), and there would be no local
extremum. For example, if f x x f( ) , ( )= ′ =3 0 0  but there is
no local extremum at x = 0.

44. No. ′′f x( ) could still be positive (or negative) on both sides
of x c= , in which case the concavity of the function would
not change at x c= . For example, if f x x( ) ,= 4  then

′′ =f ( ) ,0 0 but f has no inflection point at x = 0.

45. One possible answer:

y

x

5

–5

5–5

46. One possible answer:
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47. One possible answer:
y

x

10

–10

5–5

(–2, 8)

(0, 4)

(2, 0)

48. One possible answer:

49. (a) [0, 1], [3, 4], and [5.5, 6]

(b) [1, 3] and [4, 5.5]

(c) Local maxima: x = 1, x = 4
(if f is continuous at x = 4), and x = 6;
local minima: x = 0, x = 3, and x = 5.5

50. If f is continuous on the interval [0, 3]:

(a) [0, 3]

(b) Nowhere

(c) Local maximum: x = 3;
local minimum: x = 0

51. (a) Absolute maximum at (1, 2);
absolute minimum at (3, –2)

(b) None

(c) One possible answer:
y

2

1

–1

–2

x
321

y = f(x)

52. (a) Absolute maximum at (0, 2);
absolute minimum at (2, –1) and (–2, –1)

(b) At (1, 0) and (–1, 0)

(c) One possible answer:

(d) Since f is even, we know f f( ) ( ).3 3= − By the continuity

of f ,  since f x( ) < 0 when 2 3< < <x x , we know

that f ( ) ,3 0≤ and since f ( )2 1= − and ′ >f x( ) 0

when 2 3< <x , we know that f ( )3 1> − . In summary, we

know that f f f( ) ( ), ( ) ,3 3 1 3 0= − − < ≤
and − < − ≤1 3 0f ( ) .

53. y

4

x
654321

y = f(x)

3

2

1

–1

54.

55. False. For example, consider f x x( ) = 4 at c = 0.

56. True. This is the Second Derivative Test for a local
maximum.

57. A. y ax x x a= + = + = −3 23 4 5 2say

′ = − + +
″ = − +

″ =

y x x
y x

y

6 6 4
12 6

0
1

2

2

at

Interval x < 1 2/ x > 1 2/

Sign of ′′y + −

Behavior of y Concave up Concave down

58. E.



182 Section 4.3

59. C. y x x x= − + +5 45 3 7

′ = − +
″ = −
″ =

y x x

y x x
y

5 20 3

20 60
0

4 3

3 2

at 3

Interval x < 3 x > 3

Sign of ′′y − +

Behavior of y Concave down Concave up

3 is an inflection point.

60. A.

61. (a) In exercise 13, a = 4 and b = 21, so − = −b

a3

7

4
, which is

the x-value where the point of inflection occurs. The

local extrema are at x = –2 and x = − 3

2
, which are

symmetric about x = − 7

4
.

(b) In exercise 8, a = –2 and b = 6, so − =b

a3
1,  which is

the x-value where the point of inflection occurs. The
local extrema are at x = 0 abd x = 2, which are
symmetric about x = 1.

(c) ′ = + +f x ax bx c( ) 3 22 and

′′ = +f x ax b( ) .6 2

The point of inflection will occur where

′′ =f x( ) ,0 which is at x
b

a
= −

3
.

If there are local extrema, they will occur at the zeros
of ′f x( ). Since ′f x( ) is quadratic, its graph is a parabola
and any zeros will be symmetric about the vertex which
will also be where ′′ =f x( ) .0

62. (a) ′ =
+ − −

+

− −

−f x
ae c abe

ae

bx bx

bx
( )

( )( ) ( )( )

( )

1 0

1 2

         

=
+

=
+

−

−

−

abce

ae
abce

e a

bx

bx

bx

bx

( )

( )
,

1 2

2

so the sign of ′f x( ) is the same as the sign of abc.

(b) ′′ =
+ − +

f x
e a ab ce abce e a bbx bx bx bx

( )
( ) ( ) ( ) ( )(2 2 2 ee

e a

bx

bx

)

( )+ 4

         

=
+ −

+

= −

( )( ) ( )( )

( )

e a ab ce abce be

e a

bx bx bx bx

bx

2

3

2

aab ce e a

e a

bx bx

bx

2

3

( )

( )

−
+

Since a > 0, this changes sign when x
a

b
= ln

due to the

e abx − factor in the numerator, and f x( ) has a point of
inflection at the location.

63. (a) ′ = + + +f x ax bx cx d( ) 4 3 23 2

′′ = + +f x ax bx c( ) 12 6 22

Since is ′′f x( ) quadratic, it must have 0, 1, or 2 zeros. If
f (x) has 0 or 1 zeros, it will not change sign and the
concavity of f (x) will not change, so there is no point
of inflection. If ′′f x( ) has 2 zeros, it will change sign
twice, and f x( ) will have 2 points of inflection.

(b) If f has no points of inflection, then ′′f x( ) has 0 or
1 zeros, so the discriminant of ′′f x( ) is ≤ 0. This gives
( ) ( )( ) , .6 4 12 2 0 3 82 2b a c b ac− ≤ ≤or If f has 2 points of
inflection, then ′′f x( ) has 2 zeros and the inequality is
reversed, so 3 82b ac> . In summary, f has 2 points of
inflection if and only if 3 82b ac> .

Quick Quiz Sections 4.1–4.3

  1. (C) ′ = − + + − + =f x x x x x( ) ( ) ( ) ( ) ( )5 2 3 4 2 3 04 4 5 3

             x = − −3
7

9
2, ,

  2. (D) ′( ) = −( ) + −( ) −( ) =f x x x x3 2 2 3 0
2

′ = − − =

=

f x x x

x

( ) ( )( )

,

3 3 7 0
7

3
3

  3. (B) x2 9 0− =
x = ±3

  4. (a) 
d

dx
x x3 2 22ln ( )+ −

=
+

− =

=

3
2

2
2 0

1 2

2

x

x
x ,

Intervals − < <2 1x 1 2< <x 2 4< <x

Sign of ′y − + −

Behavior of
y

Decreasing Increasing Decreasing

f has relative minima at x = 1 and x = 4 f has relative
maxima at x = ±2

(b) ′′( ) =
+

−⎛
⎝⎜

⎞
⎠⎟

f x
d

dx

x

x

6

2
2

2

′′ =
+

−
+

=

= ±

f x
x

x

x
x

( )
( )

6

2

12

2
0

2

2

2

2 2

 f has points of inflection at x = ± 2

(c) The absolute maximum is
    at x = −2 and f x( ) ln .= +3 6 4
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Section 4.4 Modeling and Optimization
(pp. 219–232)

Exploration 1 Constructing Cones

  1. The circumference of the base of the cone is the
circumference of the circle of radius 4 minus x, or 8π − x.

Thus, r
x= −8

2

π
π

. Use the Pythagorean Theorem to find h,

and the fomula for the volume of a cone to find V.

  2. The expression under the radical must be nonnegative, that

is, 16
8

2
0

2

− −⎛
⎝⎜

⎞
⎠⎟

≥π
π

x
.

Solving this inequality for x gives: 0 16≤ ≤x π.

  3. The circumference of the original circle of radius 4 is 8 π.
Thus, 0 8≤ ≤x π.

  4. The maximum occurs at about x = 4.61. The maximum
volume is about V = 25 80. .

  5. Start with 
dV

dx
rh

dr

dx
r

dh

dx
= +2

3 3
2π π

.

Compute and
dr

dx

dh

dx
, substitute these values in

dV

dx

dV

dx
x, ,set and solve for to= 0 obtain

x = − ≈8 3 6

3
4 61

( )
. .

π

Then V = ≈128 3

27
25 80

π
. .

Quick Review 4.4

  1. ′ = − + = −y x x x3 12 12 3 22 2( )

Since ′ ≥ ′ > ≠y x y x y0 0 2for all and for( ), is increasing

on −∞ ∞( ), and there are no local extrema.

  2. ′ = + − = + −y x x x x6 6 12 6 2 12 ( )( )

′′ = +y x12 6

The critical points occur at x x= − =2 1or , since ′ =y 0 at
these points. Since ′′ − = − <y ( ) ,2 18 0 the graph has a local
maximum at x = −2. Since ′′ = >y ( ) ,1 18 0 the graph has a

local minimum at x = 1. In summary, there is a local
maximum at (−2, 17) and a local minimum at (1, −10).

  3. V r h= = =1

3

1

3
5 8

200

3
2 2π π π

( ) ( ) cm3

  4. V r h= =π 2 1000

SA rh r= + =2 2 6002π π

Solving the volume equation for h gives =
1000

2πr
.

Substituting into the surface area equation gives

2000
2 6002

r
r+ =π . Solving graphically, we have

r r r≈ − ≈ ≈11 14 4 01 7 13. , . , . .or  Discarding the negative

value and using h
r

= 1000
2π

 to find the corresponding values

of h, the two possibilities for the dimensions of the
cylinder are:
r h
r h

≈ ≈
≈

4 01 19 82
7 13
. .
.

cm and cm, or,
cm and ≈≈ 6 26. cm.

  5. Since y x= − = −sin is an odd function, sin ( ) sin .α α

  6. Since y x= − =cos is an even function, cos ( ) cos .α α

  7. sin( ) sin cos cos sinπ α π α π α− = −
= − −
=

0 1cos ( )sin
sin

α α
α

  8. cos( ) cos cos sin sinπ α π α π α− = −
= − +
= −

( )cos sin
cos
1 0α α

α

  9. x y y x2 2 4 3+ = =and

x x

x x

x
x

2 2

2 2

2

3 4

3 4

4 4
1

+ =
+ =

=
= ±

( )

Since y x= 3 ,  the solution are:

x = 1 and y = 3,  or, x = −1 and y = − 3.

In ordered pair notation, the solutions are

( ) and ( 1, 3)1 3, .− −

10. 
x y

y x
2 2

4 9
1 3+ = = +and

x x

x x

x x x

2 2

2 2

2 2

4

3

9
1

9 4 3 36

9 4 24 36 3

+ + =

+ + =
+ + + =

( )

( )

66

13 24 0
13 24 0

0
24

13

2x x
x x

x x

+ =
+ =

= = −

( )

or
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10. Continued

Since y x= + 3, the solutions are:

x y x y= = = −0 3
24

13

15

13
and or, and, .

In ordered pair notation, the solution are (0, 3) and

−⎛
⎝⎜

⎞
⎠⎟

24

13

15

13
, .

Section 4.4 Exercises

  1. Represent the numbers by x x xand 20 where− ≤ ≤, .0 20

(a) The sum of the squares is given by
f x x x x x( ) ( ) .= + − = − +2 2 220 2 40 400  Then
′ = −f x x( ) .4 40 The critical point and endpoints occur

at x x= =0 10, ,  and x = 20. Then f (0) = 400, f (10) =
200, and f (20) = 400. The sum of the squares is as large
as possible for the numbers 0 and 20, and is as small as
possible for the numbers 10 and 10.

Graphical support:

(b) The sum of one number plus the square root of the other

is given by g x x x( ) .= + −20  Then

′ = −
−

g x
x

( ) .1
1

2 20
 The critical point occurs when

2 20 1− =x ,  so 20  −  x = 
1

4

79

4
and x = .  Testing the

endpoints and critical point, we find g( )0 20= ≈

4 47
79

4

81

4
20 25 20 20. , . , ( ) .g g

⎛
⎝⎜

⎞
⎠⎟

= = =and  The sum is

as large as possible when the numbers are

79

4 4

1

4
and

1

4
summing

79
and is as s+

⎛

⎝
⎜

⎞

⎠
⎟ , mmall as

possible when the numbers are 0 andd 20

(summing 0 + 20).

Graphical support:

  2. Let x and y represent the legs of the triangle, and note that

0 < x < 5. Then x y2 2 25+ = ,  so y x= −25 2

(since y > 0). The area is A xy x x= = −1

2

1

2
25 2 ,

so 
dA

dx
x

x
x x

x

x

=
−

− + −

= −
−

1

2

1

2 25
2

1

2
25

25 2

2 25 2

2

2

2

( )

.

The critical point occurs when 25 2 02− =x ,  which means

x = 5

2
,  (since x > 0). This value corresponds to the largest

possible area, since 
dA

dx
x> < <0

5

2
for 0 and  < <dA

dx
0

for
5

2
5< <x . When x = 5

2
, we have

y = −
⎛
⎝⎜

⎞
⎠⎟

=25
5

2

5

2

2

 and A xy= =
⎛
⎝⎜

⎞
⎠⎟

=1

2

1

2

5

2

25

4

2

.

Thus, the largest possible area is 
25

4
cm2 ,  and the

dimensions (legs) are 
5

2

5

2
cm by cm.

Graphical support:

  3. Let x represent the length of the rectangle in inches (x > 0).

Then the width is 
16

x
 and the perimeter is

P x x
x

x
x

( ) .= +⎛
⎝⎜

⎞
⎠⎟

= +2
16

2
32

Since ′ = − = −−P x x
x

x
( )

( )
2 32

2 162
2

2
 this critical point

occurs at x = 4. Since ′ <P x( ) 0 for 0 4< <x  and
′ >P x( ) 0 for x > 4, this critical point corresponds to the

minimum perimeter. The smallest possible perimeter is
P( )4 16= in.,  and the rectangle’s dimensions are 4 in.
by 4 in.

Graphical support:
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  4. Let x represent the length of the rectangle in meters
(0 < x < 4). Then the width is 4 − x and the area is
A x x x x x( ) ( ) .= − = −4 4 2 Since ′ = −A x x( ) ,4 2  the critical

point occurs at x = 2. Since ′ > < <A x x( ) 0 0 2for
and for′ < < <A x x( ) ,0 2 4  this critical point corresponds
to the maximum area. The rectangle with the largest area
measures 2 m by 4 – 2 = 2m, so it is a square.

Graphical support:

  5. (a) The equation of line AB y xis = − +1, so the

y-coordinate of P is – x + 1.

(b) A x x x( ) ( )= −2 1

(c) Since ′ = − = −A x
d

dx
x x x( ) ( ) ,2 2 2 42  the critical point

occurs at x = 1

2
. Since ′A x( )  > 0 for 0 < x < 

1

2
and

′A x( )  < 0 for  < x < 1, this critical point corresponds

to the maximum area. The largest possible area is

A
1

2

1

2

⎛
⎝⎜

⎞
⎠⎟

= square unit,  and the dimensions of the

rectangle are 
1

2
unit by 1 unit.

Graphical support:

  6. If the upper right vertex of the rectangle is located at

( ) forx x x, ,12 0 122− < <  then the rectangle’s

dimensions are 2x by 12− x2  and the area is

A (x) = 2x (12 − x2 ) = 24x − 2x3. Then

′ = − = −A x x x( ) ( ),24 6 6 42 2  so the critical point

(for 0 < x < 12 ) occurs at x = 2. Since

′ > < < ′ < < <A x x A x x( ) ( ) ,0 0 2 0 2 12for and for  this

critical point corresponds to the maximum area. The largest
possible area is A( ) ,2 32=  and the dimensions are

4 by 8.

Graphical support:

  7. Let x be the side length of the cut-out square (0 < x < 4).
Then the base measures 8 – 2x in. by 15 – 2x in., and the
volume is

V x x x x x x x( ) ( )( ) .= − − = − +8 2 15 2 4 46 1203 2 Then

′ = − + = − −V x x x x x( ) ( )( ).12 92 120 4 3 5 62

Then the critical point (in 0 < x < 4) occurs at x = 5

3
.  Since

′ > < < ′ < < <V x x V x x( ) ( ) ,0 0
5

3
0

5

3
4for and for

the critical point corresponds to the maximum volume.

The maximum volume is V
5

3

2450

27
90 74 3⎛

⎝⎜
⎞
⎠⎟

= ≈ . ,in and the

dimensions are 
5

3
in. by 

14

3
in. by 

35

3
in.

Graphical support:

  8. Note that the values a and b must satisfy a b2 2 220+ =  and

so b a= −400 2 . Then the area is given by

A ab a a a= = − < <1

2

1

2
400 0 202 for , and

dA

da
a

a
a a=

−

⎛

⎝
⎜

⎞

⎠
⎟ − + −1

2

1

2 400
2

1

2
400

2

2( )

= − + −

−
= −

−

a a

a

a

a

2 2

2

2

2

400

2 400

200

400

( )
. The critical point occurs

when a
dA

da
a2 200 0 0 200= > < <. Since for  and

dA

da
a< < <0 200 20for , this critical point corresponds to

the maximum area. Furthermore, if a = 200 then

b a= − =400 2002 , so the maximum area occurs when

a = b.
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  8. Continued

Graphical support:

  9. Let x be the length in meters of each side that adjoins the
river. Then the side parallel to the river measures 800 – 2x
meters and the area is

A x x x x x x( ) ( ) .= − = − < <800 2 800 2 0 4002 for

Therefore, ′ = −A x x( ) 800 4 and the critical point occurs at

x = 200. Since ′ > < <A x x( ) 0 0 200for and

′ < < <A x x( ) ,0 200 400for  the critical point corresponds

to the maximum area. The largest possible area is

A( ) ,200 80 000 2= m and the dimensions are 200 m

(perpendicular to the river) by 400 m (parallel to the river).

Graphical support:

10. If the subdividing fence measures x meters, then the pea

patch measures x m by 
216

x
m and the amount of fence

needed is f x x
x

x x( ) .= + = + −3 2
216

3 432 1  Then

′ = − −f x x( ) 3 432 2  and the critical point (for x > 0) occurs

at x = 12. Since ′ < < <f x x( ) 0 0 12for and

′ > >f x x( ) ,0 12for the critical point corresponds to the

minimum total length of fence. The pea patch will measure
12 m by 18 m (with a 12-m divider), and the total amount
of fence needed is f ( )12 72= m.

Graphical support:

11. (a) Let x be the length in feet of each side of the square

base. Then the height is 
500

2x
ft and the surface area (not

including the open top) is

S x x x
x

x x( ) .= + ⎛
⎝⎜

⎞
⎠⎟

= + −2
2

2 14
500

2000 Therefore,

′ = − = −−S x x x
x

x
( )

( )
2 2000

2 10002
3

2
and the critical

point occurs at x = 10. Since ′ < < <S x x( ) 0 0 10for

and for′ > >S x x( ) ,0 10  the critical point corresponds

to the minimum amount of steel used. The dimensions
should be 10 ft by 10 ft by 5 ft, where the height is 5 ft.

(b) Assume that the weight is minimized when the total
area of the bottom and the four sides is minimized.

12. (a) Note that x y y
x

2
2

1125
1125= =, .so Then

                   

c x xy xy

x xy

x x
x

= + +
= +

= + ⎛
⎝⎜

⎞

5 4 10

5 30

5 30
1125

2

2

2
2

( )

⎠⎠⎟

= + −5 33 7502 1x x,

dc

dx
x x

x

x
= − = −−10 33 750

10 33752
3

2
,

( )

The critical point occurs at x = 15. Since 
dc

dx
< 0 for

0 15 0 15< < > >x
dc

dx
xand for , the critical point

corresponds to the minimum cost. The values of x and y
are x = 15 ft and y = 5 ft.

(b) The material for the tank costs 5 dollars/sq ft and the
excavation charge is 10 dollars for each square foot of
the cross-sectional area of one wall of the hole.

13. Let x be the height in inches of the printed area. Then the

width of the printed area is 
50

x
in. and the overall

dimensions are x + 8 in. by 
50

4
x

+ in. The amount of paper

used is A x x
x

x
x

( ) ( ) .= + +⎛
⎝⎜

⎞
⎠⎟

= + +8
50

4 4 82
400 2in Then

′ = − = −−A x x
x

x
( )

( )
4 400

4 1002
2

2
and the critical point

(for x > 0) occurs at x = 10. Since ′ < < <A x x( ) 0 0 10for

and for′ > >A x x( ) ,0 10  the critical point corresponds to

the minimum amount of paper. Using x + 8 and 
50

4
x

+ for

x = 10, the overall dimensions are 18 in. high by 9 in. wide.

14. (a) s t t t( ) = − + +16 96 1122

     v t s t t( ) ( )= ′ = − +32 96

     At t = 0, the velocity is v(0) = 96 ft/sec.

(b) The maximum height occurs when v(t) = 0, when t = 3.
The maximum height is s(3) = 256 ft and it occurs at
t = 3 sec.
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14. Continued

(c) Note that s t t t t t( ) ( )( ),= − + + = − + −16 96 112 16 1 72

so s = 0 at t = −1 or t = 7. Choosing the positive value,
of t, the velocity when s = 0 is v(7) = −128 ft/sec.

15. We assume that a and b are held constant. Then

A ab A ab( ) sin ( ) cos .θ θ θ θ= ′ =1

2

1

2
and The critical point

( ) . ( )for occurs at Since

fo

0
2

0< < = ′ >θ π θ π θA

rr and for0
2

0
2

< < ′ < <θ θπ π θ πA ( ) ,

the critical point corresponds to the maximum area. The

angle that maximizes the triangle’s area is θ = °π
2

90( ).or

16. Let the can have radius r cm and height h cm. Then

π
π

r h h
r

2
2

1000
1000= =, .so  The area of material used is

A r rh r
r

= + = +π π π2 22
2000

, so  
dA

dr
r r= − −2 2000 2π

= −2 20003

2

πr

r
. The critical point occurs at

r
dA

dr
= = <−1000

10 03 1 3

π
π / .cm Since

for and for0 10 0 101 3 1 3< < > >−r
dA

dr
rπ π/ / ,  the critical

point corresponds to the least amount of material used and
hence the lightest possible can. The dimensions are

r h= ≈ = ≈− −10 6 83 10 6 831 3 1 3π π/ /. .cm and cm. In Example

2, because of the top of the can, the “best” design is less big
around and taller.

17. Note that π
π

r h h
r

2
2

1000
1000= =, .so  Then

A r rh r
r

= + = +8 2 8
20002 2π ,  so

dA

dr
r r

r

r
= − = −−16 2000

16 1252
3

2

( )
.  The critical point

occurs at r = =125 53 cm.  Since 
dA

dr
< 0  for 0 < r < 5 and

dA

dr
> 0  for r > 5, the critical point corresponds to the least

amount of aluminium used or wasted and hence the most

economical can. The dimensions are r = 5 cm and h = 40

π
,

so the ratio of h to r is 
8

π
 to 1.

18. (a) The base measures 10 – 2x in. by 
15 2

2

− x
 in, so the

volume formula is

V x
x x x

x x x( )
( )( )

.= − − = − +10 2 15 2

2
2 25 753 2

(b) We require x > 0, 2x < 10, and 2x < 15. Combining
these requirements, the domain is the interval (0, 5).

(c) 

The maximum volume is approximately 66.02 
when x ≈ 1.96 in.

(d) ′ = − +V x x x( ) 6 50 752

The critical point occurs when V ′(x) = 0, at

x =
± − −

= ± = ±50 50 4 6 75

2 6

50 700

12

25 5 7

6

2( ) ( )( )

( )
,

that is, x ≈ 1.96 or x ≈ 6.37. We discard the larger value
because it is not in the domain. Since V″(x) = 12x – 50,
which is negative when x ≈ 1.96, the critical point
corresponds to the maximum volume. The maximum

volume occurs when x = − ≈25 5 7

6
1 96. ,  which

confirms the result in (c).

19. (a) The “sides” of the suitcase will measure 24 − 2x in. by
18 − 2x in. and will be 2x in. apart, so the volume
formula is

V x x x x x x x( ) ( )( ) .= − − = − +2 24 2 18 2 8 168 8643 2

(b) We require x x x> < <0 2 18 2 24, , .and  Combining
these requirements, the domain is the interval (0, 9).

[0, 9] by [–400, 1600]
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19. Continued

(c) 

The maximum volume is approximately 1309.95 
when x ≈ 3.39 in.

(d) V ′(x) = 24 2x − 336x + 864 = 24 2(x – 14x + 36)

The critical point is at

x =
± − −

= ± = ±
4 14 4 1 36

2 1

14 52

2
7 13

2( ) ( )( )

( )
,  that

is, x x≈ ≈3 39 10 61. . .or  We discard the larger value
because it is not in the domain. Since V″(x) =
24(2x −14), which is negative when x ≈ 3.39, the critical
point corresponds to the maximum volume. The

maximum value occurs at x = − ≈7 13 3 39. ,  which

confirms the results in (c).

(e) 8 168 864 11203 2x x x− + =
8 21 108 140 03 2( )x x x− + − =
8 2 5 14 0( )( )( )x x x− − − =
Since 14 is not in the domain, the possible values of
x are x = 2 in. or x = 5 in.

(f) The dimensions of the resulting box are 2x in.,
(24 – 2x) in., and (18 – 2x) in. Each of these
measurements must be positive, so that gives the
domain of (0, 9)

20. 

Let x be the distance from the point on the shoreline nearest
Jane’s boat to the point where she lands her boat. Then she

needs to row 4 2+ x mi at 2 mph and walk 6 – x mi at
5 mph. The total amount of time to reach the village is

f x
x x

( ) = + + −4

2

6

5

2

 hours (0 ≤ x ≤ 6 ). Then

′ =
+

− =
+

−f x
x

x
x

x
( ) ( ) .

1

2

1

2 4
2

1

5 2 4

1

52 2

      Solving ′ =f x( ) ,0  we have:

                  

x

x

x x

x x

x

x

2 4

1

5

5 2 4

25 4 4

21 16
4

21

2

2

2 2

2

+
=

= +
= +
=

= ±

( )

We discard the negative value of x because it is not in the
domain. Checking the endpoints and critical point, we have

f f f( ) . , . ,0 2 2
4

21
2 12=

⎛
⎝⎜

⎞
⎠⎟

≈ ≈and (6) 3.16.  Jane should

land her boat 
4

21
0 87≈ .  miles down the shoreline from

the point nearest her boat.

21. If the upper right vertex of the rectangle is located at
(x, 4 cos 0.5x) for 0 < x < π , then the rectangle has width

2x and height 4 cos 0.5x, so the area is A(x) = 8x cos 0.5x.
Then A′(x) = 8 x(−0.5 sin 0.5x) + 8(cos 0.5x)(1)
                  = −4x sin 0.5x + 8 cos 0.5x.
Solving A′(x) graphically for 0 < x < π , we find that

x ≈ 1.72. Evaluating 2x and 4 cos 0.5x for x ≈ 1.72, the
dimensions of the rectangle are approximately 3.44 (width)
by 2.61 (height), and the maximum area is approximately
8.98.

22. Let the radius of the cylinder be r cm, 0 < r < 10. Then the

height is 2 100 2− r  and the volume is

V r r r( ) .= −2 1002 2 3π cm  Then

′ =
−

⎛

⎝
⎜

⎞

⎠
⎟ − + −V r r

r
r r r( ) ( ) ( )(2

1

2 100
2 2 100 22

2

2π π ))

( )

( )

= − + −

−

= −

−

2 4 100

100
2 200 3

100

3 2

2

2

π π

π

r r r

r
r r

rr2

The critical point for 0 < r < 10 occurs at

r = =200

3
10

2

3
.  Since ′V r( )  > 0 for 0 10

2

3
< <r  and

′V r( )  > 0 for 10
2

3
10< <r , the critical point corresponds

to the maximum volume. The dimensions are

r = ≈10
2

3
8 16. cm and h = ≈20

3
11 55. cm, and the

volume is 
4000

3 3
2418 40 3π ≈ . .cm

23. Set ′ = ′ =−r x c x x x( ) ( ): .4 41 2  The only positive critical

value is x = 1, so profit is maximized at a production level

of 1000 units. Note that ( ) ( ) ( )r c x x− ′′ = − − <−2 4 03 2  for

all positive x, so the Second Derivative Test confirms the
Maximum.

24. Set ′ = ′ + = −r x c x x x x( ) ( ): / ( ) ( ) .2 1 12 2 2  We solve this

equation grpahically to find that x ≈ 0 294. .  The graph of
y = r (x) – c(x) shows a minimum at x ≈ 0 294.  and a
maximum at x ≈ 1 525. ,  so profit is maximized at a

production level of about 1,525 units.
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25. Set ′ = − + = − +c x
c x

x
x x x x( )

( )
: .3 20 30 10 302 2 The only

positive solution is x = 5, so average cost is minimized at a
production level of 5000 units. Note that

d

dx

c x

x

2

2
2 0

( )⎛
⎝⎜

⎞
⎠⎟

= >  for all positive x, so the Second

Derivative Test Confirms the minimum.

26. Set ′ = + − = −c x c x x xe e x e xx x x( ) ( ) : ./ 4 2  The only

positive solution is x = ln 2, so average cost is minimized at
a production level of 1000 ln 2, which is about 693 units.

Note that 
d

dx

c x

x
ex

2

2
0

( )⎛
⎝⎜

⎞
⎠⎟

= >  for all positive x, so the

Second Derivative Test confirms the minimum.

27. Revenue: r x x x x x( ) ( )= − −⎡⎣ ⎤⎦ = − +200 2 50 2 3002

      Cost: c x x( ) = +6000 32

    Profit: p x r x c x( ) ( ) ( )= −

                       = − + − ≤ ≤2 268 6000 50 802x x x,

Since ′ = − + = − −p x x x( ) ( ),4 268 4 67 the critical point
occurs at x = 67. This value represents the maximum
because ′′ = −p x( ) ,4 which is negative for all x in the
domain. The maximum profit occurs if 67 people go on the
tour.

28. (a) ′ = − + = −− − −f x x e e e xx x x( ) ( ) ( ) ( )1 1

The critical point occurs at x = 1. Since f ′(x) > 0 for
0 ≤ x < 1 and f ′(x) < 0 for x > 1, the critical point
corresponds to the maximum value of f. The absolute
maximum of f occurs at x = 1.

(b) To find the values of b, use grapher techniques to
solve xe e xe ex x− − − −= =0 1 0 20 1 0 2. , . ,. . and so on. To
find the values of  A, calculate (b − a) ae−2 ,  using the
unrounded values of b. (Use the list features of the
grapher in order to keep track of the unrounded values
for part (d).)

a b A

0.1 3.71 0.33

0.2 2.86 0.44

0.3 2.36 0.46

0.4 2.02 0.43

0.5 1.76 0.38

0.6 1.55 0.31

0.7 1.38 0.23

0.8 1.23 0.15

0.9 1.11 0.08

1.0 1.00 0.00

(c) 

[0, 1.1] by [–0.2, 0.6]

(d) Quadratic:

A a a≈ − + +0 91 0 54 0 342. . .

[–0.5, 1.5] by [–0.2, 0.6]

Cubic:

A a a a≈ − + +1 74 3 78 1 86 0 193 2. . . .

[–0.5, 1.5] by [–0.2, 0.6]

Quartic:

A a a a a≈ − + − + +1 92 5 96 6 87 2 71 0 124 3 2. . . . .

[–0.5, 1.5] by [–0.2, 0.6]

(e) Quadratic:

According to the quadratic regression equation, the
maximum area occurs at a ≈ 0.30 and is approximately
0.42.

Cubic:

According to the cubic regression equation, the
maxiumu area occurs at a ≈ 0.31 and is approximately
0.45.
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28. Continued
      Quartic:

According to the quartic regression equation the
maximum area occurs at a ≈ 0.30 and is approximately
0.46.

29. (a) ′f x( )  is a quadratic polynominal, and as such it can
have 0, 1, or 2 zeros. If it has 0 or 1 zeros, then its sign
never changes, so f (x) has no local extrema.
If ′f x( ) has 2 zeros, then its sign changes twice, and
f (x) has 2 local extrema at those points.

(b) Possible answers:
No local extrema: y = x3;
2 local extrema: y = x3 – 3x

30. Let x be the length in inches of each edge of the square end,

and let y be the length of the box. Then we require

4 108x y+ ≤ .  Since our goal is to maximize volume, we

assume 4x + y = 108 and so y = 108 – 4x. The volume is

V x x x x x( ) ( ) ,= − = −2 2 3108 4 108 4  where 0 < x < 27.

Then ′ = − = − −V x x x x216 12 12 182 ( ),  so the critical

point occurs at x = 18 in. Since ′ > < <V x x( ) 0 0 18for
and ′ < < <V x x( ) ,0 18 27for  the critical point corresponds

to the maximum volume. The dimensions of the box with
the largest possible volume are 18 in. by 18 in. by 36 in.

31. Since 2x  +  2y = 36, we know that y = 18 – x. In part (a),

the radius is 
x

2π
 and the height is 18 – x, and so the

volume is given by

π π
π π

r h
x

x x x2
2

2

2
18

1

4
18= ⎛

⎝⎜
⎞
⎠⎟

− = −( ) ( ).

In part (b), the radius is and the height is 18 – x, and so the
volume is given by π πr h x x2 2 18= −( ).  Thus, each
problem requires us to find the value of x that maximizes
f x x x( ) ( )= −2 18  in the interval 0 < x < 18, so the two

problems have the same answer.
To solve either problem, note that f x x( ) = −182 3 and so

′ = − = − −f x x x x x( ) ( ).36 3 3 122  The critical point occursat
x = 12. Since ′ >f x( ) 0  for 0 < x < 12 and ′ <f x( ) 0
for 12 18< <x ,  the critical point corresponds to the
maximum value of f (x). To maximize the volume in either
part (a) or (b), let x = 12 cm and y = 6 cm.

32. Note that h r2 2 3+ = and so r h= −3 2 .  Then the volume

is given by V r h h h h h= = − = −π π π π
3 3

3
3

2 2 3( )  for

0 3< <h , and so 
dV

dh
h h= − = −π π π2 21( ).  The critical

point (for h > 0) occurs at h = 1. Since 
dV

dh
> 0  for 0 < h < 1

and 
dV

dh
< 0  for 1 3< <h ,  the critical point corresponds

to the maximum volume. The cone of greatest volume has

radius 2 m, height 1 m, and volume 
2

3
3π

m .

33. (a) We require f (x) to have a critical point at x = 2. Since

′ = − −f x x ax( ) ,2 2  we have ′ = −f
a

( )2 4
4

 and so our

requirement is that 4
4

0− =a
.  Therefore, a = 16. To

verify that the critical point corresponds to a local

minimum, note that we now have ′ = − −f x x x( ) 2 16 2

and so ′′ = + −f x x( ) ,2 32 3  so ′′ =f ( ) ,2 6  which is

positive as expected. So, use a = −16.

(b) We require ′′ =f ( ) .1 0  Since ′′ = + −f ax2 2 3,  we have

′′ = +f a( ) ,1 2 2  so our requirement is that 2 + 2a = 0.

Therefore, a = −1. To verify that x = 1 is in fact an
inflection point, note that we now have

′′ = − −f x x( ) ,2 2 3  which is negative for 0 < x < 1 and

positive for x > 1. Therefore, the graph of f is concave
down in the interval (0, 1) and concave up in the
interval ( , ),1 ∞  So, use a = −1.

34. ′ = − = −−f x x ax
x a

x
( ) ,2

22
3

2
so the only sign change in

′f x( )  occurs at x
a= ⎛

⎝⎜
⎞
⎠⎟2

1 3

, where the sign changes from

negative to positive. This means there is a local minimum at
that point, and there are local maxima.

35. (a) Note that ′ = + +f x x ax b( ) .3 22  We require ′ − =f ( )1 0

and ′ =f ( ) ,3 0  which give 3 – 2a  +  b  = 0 and
27 + 6a + b = 0. Substracting the first equation from the
second, we have 24 + 8a = 0 and so a = −3. Substituting
into the first equation, we have 9 + b =  0, so b = −9.
Therefore, our equation for f x f x( ) ( )is =
x x x3 23 9− − .  To verify that we have a local maximum
at x = −1 and a local minimum at x = 3, note that

′ = − −f x x x( ) 3 6 92  = + −3 1 3( )( ),x x  which is positive
for x < −1, negative for –1 < x < 3, and positive for x >
3. So, use a = −3 and b = −9.

(b) Note that ′ = + +f x x ax b( ) 3 22  and ′′ = +f x x a( ) .6 2
We require ′ =f ( )4 0  and ′′ =f ( ) ,1 0 which give
48 + 8a + b = 0 and 6 + 2a = 0. By the second
equation, a = −3, and so the first equation becomes
48 – 24 +b = 0. Thus b = −24. To verify that we have a
local minimum at x = 4, and an inflection point at x = 1,
note that we now have ′′ = −f x x( ) .6 6  Since ′′f
changes sign at x = 1 and is positive at x = 4, the desired
conditions are satisfied. So, use a = −3 and b = −24.
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36. Refer to the illustration in the problem statement. Since

x y2 2 9+ = ,  we have x y= −9 2.  Then the volume of the

cone is given by

V r h x y

y y

y

= = +

= − +

= − −

1

3

1

3
3

1

3
9 3

3
3

2 2

2

3

π π

π

π

( )

( ) ( )

( yy y2 9 27+ + ),

for − < <3 3y .

Thus 
dV

dy
y y y y= − − + = − + −π π

3
3 6 9 2 32 2( ) ( )

               = − + −π ( )( ),y y3 1  so the critical point in the

interval (−3, 3) is y = 1. Since 
dV

dy
> 0  for − < <3 1y  and

dV

dy
< 0  for 1 < y < 3, the critical point does correspond to

the maximum value, which is V ( )1
32

3
= π

 cubic units.

37. (a) Note that w d d w2 2 2 212 144+ = = −, .so  Then we

may write S kwd kw w kw kw= = − = −2 2 3144 144( )

for 0 12< <w ,  so 
dS

dw
k kw k w= − = − −144 3 3 482 2( ).

The critical point (for 0 < w < 12) occurs at

w = =48 4 3.  Since 
dS

dw
> 0  for 0 4 3< <w  and

dS

dw
< 0  for 4 3 12< <w ,  the critical point

corresponds to the maximum strength. The dimensions

are 4 3  in. wide by 4 6  in. deep.

(b) 

The graph of S w w= −144 3  is shown. The maximum

strength shown in the graph occurs at w = ≈4 3 6 9. ,

which agrees with the answer to part (a).

(c) 

The graph of S d d= −2 2144 is shown. The
maximum strength shown in the graph occurs at

d = ≈4 6 9 8. ,  which agrees with the answer to part

(a), and its value is the same as the maximum value
found in part (b), as expected.

Changing the value of k changes the maximum strength,
but not the dimensions of the strongest beam. The
graphs for different values of k look the same except
that the vertical scale is different.

38. (a) Note that w d d w2 2 2 212 144+ = = −, .so Then we

may write S kwd kw w= = −3 2 3 2144( ) ,/ so

dS

dw
kw w w k w= − − + −

=

i
3

2
144 2 144 12 1 2 2 3 2( ) ( ) ( ) ( )/ /

(( )( )

( )( )

k w w w

k w

144 3 144

4 144 2 36

2 2 2

2 2

− − + −

= − − −

The critical point (for 0 < w < 12) occurs at w = 6. Since

dS

dw
> 0  for 0 6 0 6 12< < < < <w

dS

dw
wand for ,  the

critical point corresponds to the maximum stiffness.

The dimensions are 6 in. wide by 6 3  in. deep.

(b) 

[0, 12] by [–2000, 8000]

The graph of S w w= −( ) /144 2 3 2  is shown. The

maximum stiffness shown in the graph occurs at w = 6,
which agrees with the answer to part (a).

(c) 

[0, 12] by [–2000, 8000]

The graph of S d d= −3 2144  is shown. The
maximum stiffness shown in the graph occurs at

d = ≈6 3 10 4.  agrees with the answer to part (a), and
its value is the same as the maximum value found in
part (b), as expected.
Changing the value of k changes the maximum

stiffness, but not the dimensions of the stiffest beam.

The graphs for different values of k look the same
except that the vertical scale is different.

39. (a) v t s t t( ) ( ) sin= ′ = −10π π

The speed at time t is 10π πsin .t  The maximum speed

is 10π cm/sec  and it occurs at t t t= = =1

2

3

2

5

2
, , ,  and

t = 7

2
sec. The position at these times is s = 0 cm

(rest position), and the acceleration a t v t( ) ( )= ′ =

−10 2π πcos t  is 0 cm / sec2  at these times.
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39. Continued

(b) Since a t t( ) cos ,= −10 2π π  the greatest magnitude of
the acceleration occurs at t t t t= = = =0 1 2 3, , , ,
and t = 4. At these times, the position of the cart is
either s s= − =10 10cmor cm,  and the speed of the cart
is 0 cm/sec.

40. Since 
di

dt
t t= − +2 2sin cos ,  the largest magnitude of the

current occurs when −2 sin t + 2 cos t = 0, or sin t = cos t.

Squaring both sides gives sin cos ,2 2t t=  and we know that

sin cos ,2 2 1t t+ =  so sin cos .2 2 1

2
t t= =  Thus the possible

values of t are 
π π π
4

3

4

5

4
, , , and so on. Eliminating

extraneous solutions, the solutions of sin cost t=  are

t k= +π π
4

for integers k, and at these times

i t t= + =2 2 2 2cos sin . The peak current is 2 2 amps.

41. The square of the distance is

D x x x x x( ) ( ) ,= −⎛
⎝⎜

⎞
⎠⎟

+ + = − +3

2
0 2

9

4

2
2 2

so ′ = −D x x( ) 2 2  and the critical point occurs at x = 1.

Since ′ < < ′ > >D x x D x x( ) ( ) ,0 1 0 1for and for  the critical

point corresponds to the minimum distance. The minimum

distance is D( ) .1
5

2
=

42. Calculus method:

The square of the distance from the point ( , )1 3  to

( , )x x16 2−  is given by

D x x x

x x x x

( ) ( ) ( )= − + − −

= − + + − − −

1 16 3

2 1 16 2 48 3

2 2 2

2 2 22

2

3

2 20 2 48 3

+

= − + − −x x . Then

′ = − −
−

− = − +
−

D x
x

x
x

x
( ) ( ) .2

2

2 48 3
6 2

6

48 32 2

Solving ′ =D x( ) ,0  we have:

               

6 2 48 3

36 4 48 3

9 48 3

12 48

2

2 2

2 2

2

x x

x x

x x

x
x

= −
= −
= −
=
=

( )

±±2
We discard x = −2 as an extraneous solution, leaving x = 2.
Since ′ < − < ′ >D x x D x( ) ( )0 2 0for 4 < and for 2 4< <x ,

the critical point corresponds to the minimum distance. The

minimum distance is D( ) .2 2=
Geometry method:
The semicircle is centered at the origin and has radius 4.

The distance from the origin to ( , )1 3  is 1 3 22 2+ =( ) .

The shortest distance from the point to the semicircle is the

distance along the radius containing the point ( , ).1 3 That

distance is 4 – 2 = 2.

43. No. Since f x( )  is a quadratic function and the coefficient

of x2  is positive, it has an absolute minimum at the point

where ′ = − =f x x( ) ,2 1 0  and the point is 
1

2

3

4
, .

⎛
⎝⎜

⎞
⎠⎟

44. (a) Because f (x) is periodic with period 2π.

(b) No. Since f (x) is continuous on [ , ],0 2π its absolute

minimum occurs at a critical point or endpoint.
Find the critical points in [ , ] :0 2π

′ = − − =f x x x( ) sin sin4 2 2 0

    

− − =
− + =
4 4 0

4 1 0
sin sin cos

(sin )( cos )
sin

x x x
x x

xx x
x

or= = −
=

0 1
0 2

cos
, ,π π

The critical points (and endpoints) are (0, 8), ( , ),π 0

and ( , ).2 8π  Thus, f (x) has an absolute minimum at

( , )π 0 and it is never negative.

45. (a)                 2 2sin sint t=
2 2

2 1 0
sin sin cos

(sin )( cos )
sin

t t t
t t

t

=
− =

= 00 1or cos t =
t k= π , where k is an integer

The masses pass each other whenever t is an integer
multiple of π seconds.

(b) The vertical distance between the objects is the absolute
value of f x t t( ) sin sin .= −2 2

Find the critical points in [ , ] :0 2π
′ = − =

− − =
f x t t

t t

( ) cos cos

( cos ) cos

2 2 2 0

2 2 1 2 02

22 2 1 0
2 2 1 1 0

2( cos cos )
( cos )(cos )

t t
t t

− − =
+ − =

 
orcos cost = − 1

2
tt

t

=

=

1

2

3

4

3
0 2

π π π, , ,

The critical points (and endpoints) are (0, 0),

2

3

3 3

2

4

3

3 3

2

π π
, , , ,−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ and ( , )2 0π

The distance is greatest when t = 2

3

π
 sec and when

t = 4

3

π
sec. The distance at those times is 

3 3

2
 meters.



Section 4.4 193

46. (a)    sin sint t= +⎛
⎝⎜

⎞
⎠⎟

π
3

sin sin cos cos sin

sin sin cos

t t t

t t t

= +

= +

π π
3 3

1

2

3

2
1

22

3

2
3

sin cos

tan

t t

t

=

=

Solving for t, the particles meet at t = π
3

sec and at

t = 4

3

π
 sec.

(b) The distance between the particles is the absolute value

of f t t t t t( ) sin sin cos sin .= +⎛
⎝⎜

⎞
⎠⎟

− = −π
3

3

2

1

2
 Find the

critical points in [ , ] :0 2π

′ = − − =f t t t( ) sin cos
3

2

1

2
0

                          
− =

= −

3

2

1

2
1

3

sin cos

tan

t t

t

The solutions are t t= =5

6

11

6

π π
and ,  so the critical

points are at 
5

6
1

11

6
1

π π
, , ,−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

and  and the interval

endpoints are at 0
3

2
2

3

2
, , , .

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟and π  The particles

are farthest apart at t = 5

6

π
 sec and at t = 11

6

π
sec,  and

the maximum distance between the particles is 1 m.

(c) We need to maximize ′f t( ),  so we solve ′′ =f t( ) .0

′′ = − + =

=

f t t t

t t

( ) cos sin

sin cos

3

2

1

2
0

1

2

3

2
This is the same equation we solved in part (a), so the

solutions are t t= =π π
3

4

3
sec sec.and

For the function y f t= ′( ),  the critical points occur at

π π
3

1
4

3
1, , ,−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

and  and the interval endpoints are

at 0
1

2
2

1

2
, , .−⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

and π

Thus, ′f t( )  is maximized at t t= =π π
3

4

3
and .  But

these are the instants when the particles pass each other,

so the graph of y f t= ( )  has corners at these points

and 
d

dt
f t( )  is undefined at these instants. We cannot

say that the distance is changing the fastest at any
particular instant, but we can say that near

t t= =π π
3

4

3
or  the distance is changing faster than at

any other time in the interval.

47. The trapezoid has height (cos )θ ft and the trapezoid bases

measure 1 ft and ( sin ) ,1 2+ θ ft so the volume is given by

V ( ) (cos )( sin )( )θ θ θ= + +1

2
1 1 2 20

        = +20 1(cos )( sin ).θ θ

Find the critical points for 0
2

≤ <θ π
:

  ′ = + + − =V ( ) (cos )(cos ) ( sin )( sin )θ θ θ θ θ20 20 1 0

                            

20 20 20 0

20 1 20

2 2

2
cos sin sin

( sin ) sin

θ θ θ
θ θ

− − =
− − − 220 0

20 2 1 0
20 2 1

2

2
sin

( sin sin
( sin )(s

θ
θ θ

θ

=
− + − =

− − iin )θ + =1 0

                                                     
sin sinθ θ= = −1

2
1or

θ π=
6

      The critical point is at 
π
6

15 3, .
⎛
⎝⎜

⎞
⎠⎟

 Since

′ > ≤ < ′ < < <V V( ) ) ,θ θ π θ π θ π
0 0

6
0

2
for and ( for

6
 the

critical point corresponds to the maximum possible trough

volume. The volume is maximized when θ π=
6

.

48. (a) 

Sketch segment RS as shown, and let y be the length of segment
QR. Note that PB = 8.5 – x, and so

QB x x x= − − = −2 28 5 8 5 2 8 5( . ) . ( . ).

Also note that triangles QRS and PQB are similar.

             

QR

RS

PQ

QB
y x

x

=

=
−8 5 8 5 2 8 5. . ( . )
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48. Continued

(a)
y x

x

y
x

x
L x y

L

2

2

2

2
2

2 2 2

8 5 8 5 2 8 5
8 5

2 8 5

. . ( . )
.

.

=
−

=
−

= +
22 2

2

2
2 2

8 5

2 8 5
2 8 5 8 5

2 8 5

= +
−

= − +
−

x
x

x

L
x x x

x

L

.

.
( . ) .

.
22

32

2 8 5
=

−
x

x .

(b) Note that x > 4 25. ,  and let f x L
x

x
( )

.
.= =

−
2

22

2 8 5
 Since

y ≤ 11,  the approximate domain of f is 5.20 ≤ ≤x 8 5. .

Then

′ = − −
−

=f x
x x x

x

x x
( )

( . )( ) ( )( )

( . )

(2 8 5 6 2 2

2 8 5

82 3

2

2 −−
−

51

2 8 5 2

)

( . )x

For x > 5 20. ,  the critical point occurs at

x = =51

8
6 375. in., and this corresponds to a minimum

value of f x( )  because ′ < < <f x x( ) . .0 5 20 6 375for

and for .′ > >f x x( ) .0 6 375  Therefore, the value of x

that minimizes L x2 6 375is = .  in.

(c) The minimum value of L is

2 6 375

2 6 375 8 5
11 04

3( . )

( . ) .
.

−
≈  in.

49. Since R M
C M C

M M= −⎛
⎝⎜

⎞
⎠⎟

= −2 2 3

2 3 2

1

3
,  we have

dR

dM
CM M f M CM M= − = −2 2. ( ) .Let  Then

′ = −f M C M( ) ,2  and the critical point for f occurs at

M
C=
2

.  This value corresponds to a maximum because

′ > < ′ <f M M
C

f M( ) ( ) .0
2

0for and for M>
2

C
 The value

of M that maximizes 
dR

dM
M

C
is =

2
.

50. The profit is given by
P x n x c a b x x c

bx

( ) ( )( ) ( )( )

(

= − = + − −
= +

100

102 00 100+ + −c bx a bc) ( ).

Then ′ = − + +P x bx c b( ) ( )2 100

                  = + −b c x( ).100 2

The critical point occurs at x
c c= + = +100

2
50

2
, and this

value corresponds to the maximum profit because

′ > < + ′ < > +P x x
c

P x x
c

( ) ( )0 50
2

0 50
2

for and for ..

A selling price of 50
2

+ c
 will bring the maximum profit.

51. True. This is guaranteed by the Extreme Value Theorem
(Section 4.1).

52. False. For example, consider f x x c( ) .= =3 0at

53. D. f x x x( ) ( )= −2 60

    

′ = − + −
= − + −
= − +

f x x x x

x x x

x

( ) ( ) ( )( )2

2 2

2

1 60 2

120 2

3 1220
3 40

x
x x= − −( )

x x
x x

= =
− = − =

0 40
60 60 60 20

or

x x2

2
60 0

40 20 1600 20
32 000

( )

( ) ( ) ( )( )
,

− =
=
=

54. B. Since ′f x( )  is negative, f x( )  is always decreasing, so

f ( ) .25 3=

55. B. A bh= 1

2

b h2 2 100+ =

b h

A
h

h

A
h h

h
A

= −

= −

′ = − −
−

′ =

100

2
100

100

2 2 100
0

2

2

2 2

2

wwhen h

b

A

=

= − =

= =

50

100 50 50
1

2
50 50 25

2

max

56. E. length = 2x

height = − − = −30 4 30 52 2 2x x x

2 30 5 60 10

60 10 60 30

2 3

3 2

x x x x
dA

dx
x x x

x

( )

( )

− = −

− = −

= 22

2 2 30 2 4 2 40 2
2 2( ( ) ) .− − =

57. 

Let P be the foot of the perpendicular from A to the mirror,
and Q be the foot of the perpendicular from B to the mirror.
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57. Continued
Suppose the light strikes the mirror at point R on the way
from A to B. Let:
  a = distance from A to P
  b = distance from B to Q
  c = distance from P to Q
  x = distance from P to R
To minimize the time is to minimize the total distance the
light travels going from A to B. The total distance is

D x x a c x b( ) ( )= + + − +2 2 2 2

Then

′ =
+

+
− +

− −

=
+

D x
x a

x
c x b

c x

x

x

( ) ( )
( )

[ ( )]
1

2
2

1

2
2

2 2 2 2

2 aa

c x

c x b2 2 2
− −

− +( )

Solving ′ =D x( ) 0  gives the equation

x

x a

c x

c x b2 2 2 2+
= −

− +( )
 which we will refer to as

Equation 1. Squaring both sides, we have:

x

x a

c x

c x b

x c x b c x

2

2 2

2

2 2

2 2 2
+

= −
− +

− +⎡
⎣

⎤
⎦ = −

( )

( )

( ) ( )) ( )

( ) ( ) ( )

2 2 2

2 2 2 2 2 2 2 2

2

x a

x c x x b c x x c x a

x

+

− + = − + −
bb c x a

x b c xc x a

a b x

2 2 2

2 2 2 2 2

2 2 2

2

0

= −
= − +⎡

⎣
⎤
⎦

= −

( )

( ) −− +
= + − − −

=
+

2
0

2 2 2a cx a c
a b x ac a b x ac

x
ac

a b

[( ) ][( ) ]

or x
ac

a b
=

−

      Note that the value x
ac

a b
=

−
 is an extraneous solution

because x and c – x have opposite signs for this value. The

only critical point occurs at x
ac

a b
=

+
.

To verify that critical point represents the minimum
distance, note that

′′ =

+ −
+

⎛

⎝
⎜

⎞

⎠
⎟

+
−D x

x a x
x

x a

x a
( )

( )( ) ( )2 2

2 2

2 2

1

             

( ( ) )( ) ( )
( )

( )
c x b c x

c x

c x b
− + − − − − −

− +

⎛

⎝
⎜
⎜

⎞

⎠
⎟2 2

2 2
1

⎟⎟

− +( )c x b2 2

          

= + −
+

− − − + + −( )

( )

[( ) ] ( )

[(

x a x

x a

c x b c x

c

2 2 2

2 2 3 2

2 2 2

−− +

=
+

+
− +

x b
a

x a

b

c x b

) ]

( ) [( ) ]
,

2 2 3 2

2

2 2 3 2

2

2 2 3 2

which is always positive.
We now know that D x( ) is minimized when Equation 1 is

true, or, equivalently,
PR

AR

QR

BR
= . This means that the two

right triangles APR and BQR are similar, which in turn
implies that the two angles must be equal.

58. 
dv

dx
ka kx= − 2

The critical point occurs at x
ka

k

a= =
2 2

, which represents a

maximum value because
d v

dx
k

2

2
2= − , which is negative for

all x. The maximum value of v is

kax kx ka
a

k
a ka− = ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

=2
2 2

2 2 4
.

59. (a) v cr r cr= −0
2 3

dv

dr
cr r cr cr r r= − = −2 3 2 30

2
0( )

The critical point occurs at r
r

=
2

3
0 . (Note that r = 0 is

not in the domain of v.) The critical point represents a

maximum because
d v

dr
cr cr c r r

2

2 0 02 6 2 3= − = −( ), which

is negative in the domain 
r

r r0
02

≤ ≤ .

(b) We graph v r r= −( . ) ,0 5 2 and observe that the

maximum indeed occurs at v = ⎛
⎝⎜

⎞
⎠⎟

=2

3
0 5

1

3
. .

60. (a) Since ′′ = − +−A q kmq
h

( ) ,2

2
the critical point occurs

when 
km

q

h
2 2

= , or q
km

h
= 2

. This corresponds to the

minimum value of A q( ) because ′′ = −A q kmq( ) ,2 3 which

is positive for q > 0.

(b) The new formula for average weekly cost is

                 

B q
k bq m

q
cm

hq

km

q
bm cm

hq

A q bm

( )
( )

( )

=
+

+ +

= + + +

= +

2

2

Since B q( ) differs from A q( ) by a constant, the
minimum value of B q( ) will occur at the same q-value
as the minimum value of A q( ) . The most economical

quantity is again
2km

h
.
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61. The profit is given by
p x r x c x

x x x x

x x x

( ) ( ) ( )

( )

,

= −
= − − +
= − + −

6 6 15

6 9

3 2

3 2 ffor x ≥ 0.

Then ′ = − + − = − − −p x x x x x( ) ( )( ),3 12 9 3 1 32 so the critical

points occur at x = 1 and x = 3. Since ′ <p x( ) 0 for
0 1 0 3≤ < ′ > < <x p x x, ( ) ,for 1 and ′ <p x( ) 0 for x > 3, the

relative maxima occur at the endpoint x = 0  and at the

critical point x = 3. Since p p( ) ( ) ,0 3 0= = this means that

for x ≥ 0, the function p x( ) has its absolute

maximum value at the points (0, 0) and (3, 0). This result
can also be obtained graphically, as shown.

62. The average cost is given by

a x
c x

x
x x( )

( )
, .= = − +2 20 20 000 Therefore,

′ = −a x x( ) 2 20 and the critical value is x = 10, which

represents the minimum because ′′ =a x( ) ,2 which is

positive for all x. The average cost is minimized at a
production level of 10 items.

63. (a) According to the graph, ′ =y ( ) .0 0

(b) According to the graph, ′ − =y L( ) .0

(c) y( ) ,0 0=  so d = 0.

Now ′ = + +y x ax bx c( ) ,3 22 so ′y ( )0 implies that

c = 0. Therefore, y x ax bx( ) = +3 2 and

′ = +y x ax bx( ) .3 22 Then y L aL bL H( )− = − + =3 2 and

′ − = − =y L aL bL( ) ,3 2 02 so we have two linear

equations in the two unknowns a and b. The second

equation gives b
aL= 3

2
. Substituting into the first

equation, we have − + =aL
aL

H3
33

2
, or

aL
H

3

2
= , so a

H

L
= 2

3
. Therefore, b

H

L
= 3

2
and the

equation for y

is y x
H

L
x

H

L
x( ) ,= +2 3

3
3

2
2 or

y x H
x

L

x

L
( ) .= ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 3
3 2

64. (a) The base radius of the cone is r
a x= −2

2

π
π

and so the

height is h a r a
a x= − = − −⎛

⎝⎜
⎞
⎠⎟

2 2 2
2

2

2

π
π

. Therefore,

V x r h
a x

a
a x

( ) = = −⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

π π π
π

π
π3 3

2

2

2

2
2

2
2

22

.

(b) To simplify the calculations, we shall consider the
volume as a function of r:

volume = = −f r r a r( ) ,
π
3

2 2 2 where 0 < <r a.

   

′ = −

=
−

− +

f r
d

dr
r a r

r
a r

r a

( ) ( )

( ) (

π

π
3

3

1

2
2

2 2 2

2

2 2

2i i −−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− + −

−

⎡

⎣
⎢
⎢

⎤

r r

r r a r

a r

2

3 2 2

2 2

2

3

2

)( )

( )π

⎦⎦
⎥
⎥

= −

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

π

π

3

2 3

2 2

3

2 2

2 2

2 2

( )

( )

a r r

a r
r a r

aa r2 2−

The critical point occurs when r
a2

22

3
= , which

gives r a
a= =2

3

6

3
. Then

h a r a
a a a= − = − = =2 2 2

2 22

3 3

3

3
. Using

r
a= 6

3
and h

a= 3

3
,

we may now find the values of r and h for the given
values of a

when a r h= = =4
4 6

3

4 3

3
: , ;

when a r h= = =5
5 6

3

5 3

3
: , ;

when a r h= = =6 2 6 2 3: , ;

when a r h= = =8
8 6

3

8 3

3
: ,

(c) Since r
a= 6

3
and h

a= 3

3
, the relationship is

r

h
= 2.

65. (a) Let x0 represent the fixed value of x at point P, so that P
has coordinates (x0, a) and let m = f ′ (x0) be the
slope of line RT. Then the equation of line RT  is
y m x x a= − +( ) .0 The y-intercept of this line

is m x a a mx( ) ,0 0 0− + = − and the x-intercept is the

solution of m x x a( ) ,− + =0 0 or x
mx a

m
=

−0 . Let O

designate the origin. Then (Area of triangle RST)
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65. Continued

(a) = 2 (Area of triangle ORT)

= 2
1

2
i  (x-intercept of line RT) (y-intercept of line RT)

=
−⎛

⎝⎜
⎞
⎠⎟

−2
1

2
0

0i
mx a

m
a mx( )

= −
−⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

m
mx a

m

mx a

m
0 0

= −
−⎛

⎝⎜
⎞
⎠⎟

mx a

m
0

2

= − −⎛
⎝⎜

⎞
⎠⎟

m x
a

m0

2

Substituting x for x f x0 , ( )′ for m, and f x( ) for a, we

have A x f x x
f x

f x
( ) ( )

( )

( )
.= − ′ −

′
⎡

⎣
⎢

⎤

⎦
⎥

2

(b) The domain is the open interval (0, 10).

To graph, let y f x
x

1

2

5 5 1
100

= = + −( ) ,

y f x2 = ′ =( ) NDER ( ),y1 and

y A x y x
y

y
3 2

1
2

2

= = − −
⎛

⎝⎜
⎞

⎠⎟
( ) .

The graph of the area function y A x3 = ( ) is shown

below.

[0, 10] by [–100, 1000]

The vertical asymptotes at x = 0 and x = 10 correspond
to horizontal or vertical tangent lines, which do not
form triangles.

(c) Using our expression for the y-intercept of the tangent
line, the height of the triangle is
a mx f x f x x

x
x

x
x

− = − ′

= + − − −

−

= +

( ) ( ) i

5
1

2
100

2 100

5
1

2

2

22
100

2 100

2
2

2
− +

−
x

x

x

We may use graphing methods or the analytic method in
part (d) to find that the minimum value of A(x) occurs at
x ≈ 8 66. .  Substituting this value into the expression
above, the height of the triangle is 15. This is 3 times
the y-coordinate of the center of the ellipse.

(d) Part (a) remains unchanged. The domain is (0, C). To
graph, note that

 f x B B
x

C
B

B

C
C x( ) = + − = + −1

2

2
2 2  and

′ =
−

− = −

−
f x

B

C C x
x

Bx

C C x
( ) ( ) .

1

2
2

2 2 2 2

Therefore, we have

A x f x x
f x

f x
( ) ( )

( )

( )
= − ′ −

′
⎡
⎣
⎢

⎤
⎦
⎥

2

=
−

−
+ −

−

−

⎡

⎣

⎢
⎢Bx

C C x
x

B
B

C
C x

Bx

C C x

2 2

2 2

2 2

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
−

− + − −
−

⎡

2

2 2

2 2 2 2Bx

C C x
x

BC B C x C x

Bx

( )

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

+ + − −⎡
⎣

2

2 2

2 2 2 2 21

BCx C x
Bx BC B C x C x( )( )⎢⎢

⎤
⎦⎥

=
−

+ − + −⎡
⎣⎢

⎤
⎦⎥

=

2

2 2

2 2 2 2 2
21

BCx C x
Bx BC C x B C x(

11
2 2

2 2
2

2 2 2

BCx C x
BC C C x

BC C C x

x C

−
+ −⎡

⎣⎢
⎤
⎦⎥

= + −

( )

( )
22 2− x

′ =

− + − −

−

⎛

⎝
⎜

⎞

⎠
⎟ −

A x BC

x C x C C x
x

C x

( )

( )( )(

(

i

2 2 2 2

2 2
2

CC C x x
x

C x
C x

x C x

+ − −

−
+ −

⎛

⎝
⎜

⎞

⎠
⎟

−

=

2 2 2

2 2

2 2

2 2 2

1) ( )

( )

BBC C C x

x C x

x C C x

x

C x

( )

( )

( )
+ −

−

− − + −
−

−

2 2

2 2 2

2 2 2

2

2 2

2

++ −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= + −

−

C x

BC C C x

x C x

2 2

2 2

2 2

( )
22

2
2

2 2

2 2 2 2 2

2− +
−

− − + − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
Cx

C x

C C x x C x( )

== + −
− −

− − −
⎛

⎝
⎜

BC C C x

x C x

Cx

C x
C C x C

( )

( )

2 2

2 2 2

2

2 2

2 2 2
⎞⎞

⎠
⎟

= + −
−

− − −BC C C x

x C x
Cx C C x C C

( )

( )
( )

2 2

2 2 2 3 2
2 2 2 2 22 2

2 2 2

2 2 2 3 2
2 22

−⎡
⎣⎢

⎤
⎦⎥

= + −
−

− −

x

BC C C x

x C x
x C

( )

( )
( CC C x2 2− )

    To find the critical points for 0 < x < C, we solve:

    

2

4 4

4 3

2 2 2 2

4 2 2 4 4 2 2

4 2 2

x C C C x

x C x C C C x

x C x

− = −
− + = =

− = 00

4 3 02 2 2x x C( )− =
The minimum value of A(x) for 0 < x < C occurs at the

critical point x
C

x
C= =3

2

3

4
2

2

, .or  The corresponding

triangle height is
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65. Continued

a mx f x f x x

B
B

C
C x

Bx

C C x

B
B

C
C

− = − ′

= + − +
−

= +

( ) ( ) i

2 2
2

2 2

22
2

2

2
2

3

4

3

4

3

4

2

3

− +

⎛

⎝
⎜

⎞

⎠
⎟

−

= + ⎛
⎝⎜

⎞
⎠⎟

+

C
B

C

C C
C

B
B

C

C
BCC

C

B
B B

B

2

2
4

2

2

3

2
3

= + +

=

      This shows that the triangle has minimum area when its
height is 3B.

Section 4.5 Linerization and Newton’s
Method (pp. 233–245)

Exploration 1 Appreciating Local Linearity

  1.

 y = (x2 + 0.0001)1/4 + 0.9

The function appears to come to a point.

  2. f a
f x f a

x a
x

x a

x a

1

2 10 0001

( ) lim
( ) ( )

lim
( . )

= −
−

= +
→

→

// /. (( . ) . )

lim
( .

4 1 4

2

0 9 0 0 0001 0 9

0
0

+ − + +
−

= +
→

x
x

x a

00001 0 1
0

1 4) ./ − =
x

f(x) is differentiable at x = 0, and the equation of the tangent
line is y = 1.

  3. The graph of the function at that point seems to become the
graph of a straight line with repeated zooming.

  4. The graph will eventually look like the tangent line.

Exploration 2 Using Newton’s Method on
Your Calculator

See text page 237.

Quick Review 4.5

  1. 
dy

dx
x

d

dx
x x x= + + = +cos ( ) ( ) cos ( )2 2 21 1 2 1i

  2. 
dy

dx

x x x x

x
=

+ − − +

+

( )( sin ) ( cos )( )

( )

1 1 1

1 2

     

= − + − − −

+

=
− − +

x x x x x x

x
x x

sin sin cos

( )
cos ( ) si

1

1
1 1

2

nn

( )

x

x +1 2

  3.

x ≈ −0 567.

  4.

x ≈ −0 322.

  5. ′ = − + = −− − − −f x x e e e xex x x x( ) ( )( ) ( )( )1

 f ′ (0) = 1
The lines passes through (0, 1) and has slope 1. Its equation
is y = x + 1.

  6. ′ = − + = −− − − −f x x e e e xex x x x( ) ( )( ) ( )( )1

′ − = − − =f e e e( ) ( )1 21 1

The lines passes through (−1, −e + 1) and has slope 2e.
Its equation is y e x e y ex e= + + − + = + +2 1 1 2 1( ) ( ), .or

  7. (a) x + =1 0
x = −1

(b) 2 1 0ex e+ + =
2 1

1

2
0 684

ex e

x
e

e

= − +

= − + ≈ −

( )

.
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8. ′ = −f x x( ) 3 42

′ = − = −f ( ) ( )1 3 1 4 12

Since f f( ) ( ) ,1 2 1 1= − ′ = −and  the graph of g(x) passes
through (1, −2) and has slope –1. Its equation is
g(x) = −1(x − 1) + (−2), or g(x) = −x − 1.

x f x( ) g x( )

0.7 −1.457 −1.7

0.8 −1.688 −1.8

0.9 −1.871 −1.9

1.0              −2          −2

1.1 −2.069 −2.1

1.2 −2.072 −2.2

1.3 −2.003 −2.3

  9. ′ =f x x( ) cos

′ =f ( . ) cos .1 5 1 5

Since f (1.5) = sin 1.5 and ′ =f ( . ) cos . ,1 5 1 5  the tangent line
passes through (1.5, sin 1.5) and has slope cos 1.5. Its
equation is y x= − +(cos . )( . ) sin . ,1 5 1 5 1 5  or approximately
y x= +0 071 0 891. .

[0, π] by [–0.2, 1.3]

10. For x f x
x

f> ′ =
−

′ =3
1

2 3
4

1

2
, ( ) , ( ) .and so  Since

f f( ) ( ) ,4 1 4
1

2
= ′ =and the tangent line passes through

(4, 1) and has slope 
1

2
. Its equation is

y x y x= − + = −1

2
4 1

1

2
1( ) , .or

Section 4.5 Exercises

  1. (a) ′ = −f x x( ) 3 22

We have f (2) = 7 and ′ =f ( ) .2 10

L x f f x
x

x

( ) ( ) ( )( )
( )

= + ′ −
= + −
= −

2 2 2
7 10 2
10 13

(b) Since f ( 2.1) = 8.061 and L(2.1) = 8, the approximation
differs from the true value in absolute value by less
than 10 1− .

  2. (a) ′ =
+

=
+

f x
x

x
x

x
( ) ( )

1

2 9
2

92 2

We have f f( ) ( ) .− = ′ − = −4 5 4
4

5
and

L x f f x

x

x

( ) ( ) ( )( ( ))

( )

= − + ′ − − −

= − +

= − +

4 4 4

5
4

5
4

4

5

9

5

(b) Since f L( . ) . ( . ) . ,− ≈ − =3 9 4 9204 3 9 4 92and  the
approximation differs from the true value by less than
10 3− .

  3. (a) ′ = − −f x x( ) 1 2

We have f f( ) ( ) .1 2 1 0= ′ =and

L x f f x
x

( ) ( ) ( )( )
( )

= + ′ −
= + −
=

1 1 1
2 0 1
2

(b) Since f (1.1) 2.009 and L( . ) ,1 1 2=  the approximation
differs from the true value by less than 10 2− .

  4. (a) ′ =
+

f x
x

( )
1

1
We have andf f( ) ( ) .0 0 0 1= ′ =
L x f f x

x
x

( ) ( ) ( )( )= + ′ −
= +
=

0 0 0
0 1

 (b) Since f ( 0.1) ≈ 0.0953 and L( . ) .0 1 0 1=  the
approximation differs from the true value by less
than 10 2− .

  5. (a) ′ =f x x( ) sec2

We have f f( ) ( ) .π π= ′ =0 1and

L x f f x
x

x

( ) ( ) ( )( )
( )

= + ′ −
= + −
= −

π π π
π

π
0 1

(b) Since f L( . ) . ( . ) . ,π π+ ≈ + =0 1 0 10033 0 1 0 1and  the
approximation differs from the true value in absolute

value by less than 10 3− .

  6. (a) ′ = −
−

f x
x

( )
1

1 2

We have f f( ) ( ) .0
2

0 1= ′ = −π
and

L x f f x

x

x

( ) ( ) ( )( )

( )( )

= + ′ −

= + − −

= − +

0 0 0

2
1 0

2

π

π
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6. Continued
(b) Since f L( . ) . ( . ) . ,0 1 1 47063 0 1 1 47080≈ ≈and  the

approximation differs from the true value in absolute
value by less than 10 3− .

  7. ′ = + −f x k x k( ) ( )1 1

We have f f k( ) ( ) .0 1 0= ′ =and

L x f f x
k x
kx

( ) ( ) ( )( )
( )

= + ′ −
= + −
= +

0 0 0
1 0
1

  8. (a) ( . ) ( . ) ( )( . )1 002 1 0 002 1 100 0 002100 100= + ≈ +
=1 2. ;

1 002 1 2 0 021 10100 1. . .− ≈ < −

(b) 1 009 1 0 009 1
1

3
0 009 1 0033 1 3. ( . ) ( . ) . ;/= + ≈ + =

1 009 1 003 9 10 103 6 5. .− ≈ × <− −

  9. (a) f x x x x x( ) ( ) [ ( )] ( )= − = + − ≈ + − = −1 1 1 6 1 66 6

(b) f x
x

x x( ) [ ( )] [ ( )( )]=
−

= + − ≈ + − −−2

1
2 1 2 1 11

= 2 + 2x

(c) f x x x
x

( ) ( ) /= + ≈ + −
⎛

⎝⎜
⎞

⎠⎟
= −−1 1

1

2
1

2
1 2

10. (a) f x x
x

( ) ( ) / /

/

= + = +
⎛

⎝⎜
⎞

⎠⎟
4 3 4 1

3

4
1 3 1 3

1 3

≈ + ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

4 1
1

3

3

4
4 1

4
1 3 1 3/ /x x

(b) f x x
x

( )

/

= + = +
⎛

⎝
⎜

⎞

⎠
⎟2 2 1

2
2

2
1 2

≈ +
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ = +

⎛

⎝
⎜

⎞

⎠
⎟2 1

1

2 2
2 1

4

2 2x x

(c) f x
x x

( )

/

= −
+

⎛

⎝⎜
⎞

⎠⎟
= + −

+

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1

2
1

1

2

2 3 2//3

≈ + −
+

⎛

⎝⎜
⎞

⎠⎟
= −

+
1

2

3

1

2
1

2

6 3x x

11. x = 100

′ = =

= + −

−f

f

( ) ( ) .

( ) . (

/100
1

2
100 0 05

100 10 0 05 101

1 2

1100 10 05) .=

12. x = 27

′ = =

= + −

−f

f

y

( ) ( )

( ) ( / )( )

/27
1

3
27

1

27
27 3 1 27 26 27

2 3

== − ≈3
1

27
2 962.

13. x = 1000

′ = =

= + −

−f

y x

( ) ( )

( / )(

/1000
1

3
1000

1

300
10 1 300 10

2 3

000

10
1

150
9 993

)

.y = − =

14. x = 81

′ = =

= + −

= − =

−f

y

y

( ) ( )

( )

/81
1

2
81

1

18

9
1

18
80 81

9
1

18

1 2

88 94.

15. Let f x x x( ) .= + −3 1 Then ′ = +f x x( ) 3 12 and

x x
f x

f x
x

x x

x
n n

n

n
n

n n

n

+ = −
′

= −
+ −

+1

3

2

1

3 1

( )

( )
.

Note that f is cubic and ′f is always positive, so there is
exactly one solution. We choose x

1
0= .

x
x
x
x
x
x

1

2

3

4

5

6

0
1
0 75
0 6860465
0 6823396
0

=
=
=
≈
≈
≈

.

.

.

..

.
. .

6823278
0 6823278

0 682328
7

x
x

≈
≈Solution:

16. Let f x x x( ) .= + −4 3 Then ′ = +f x x( ) 4 13 and

x x
f x

f x
x

x x

x
n n

n

n
n

n n

n

+ = −
′

= −
+ −

+1

4

3

3

4 1

( )

( )

The graph of y f x= ( ) shows that f x( ) = 0 has two

solutions.

      

x x
x x
x

1 1

2 2

3

1 5 1 2
1 455 1 6541962

= − =
= − ≈
≈ −

. .

. .
11 4526332 1 1640373
1 4526269

3

4

. .

.
x

x
≈

≈ − x
x x

4

5 5

1 1640351
1 4526269 1 1640

≈
≈ − ≈

.
. . 3351

Solution:x ≈ −1 452627 1 164035. , .

17. Let f x x x x( ) sin .= − + −2 2 1

Then ′ = −f x x x( ) cos2 2 and

x x
f x

f x
x

x x x

xn n
n

n
n

n n n

n
+ = −

′
= −

− + −

−1

2 2 1

2 2

( )

( )

sin

−− cos x
n
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17. Continued

The graph of y f x= ( ) shows that f x( ) = 0 has two

solutions

      

     

x x
x x
x

1 1

2 2

3

0 3 2
0 3825699 1 9624598
0 3862

= =
≈ ≈
≈

.
. .
. 2295 1 9615695

0 3862369 1 9615690
3

4 4

5

x
x x
x

≈
≈ ≈
≈

.
. .

00 3862369 1 96156905. .x ≈

Solutions:x ≈ 0 386237 1 961569. , .

18. Let f x x( ) .= −4 2 Then ′ =f x x( ) 4 3 and

x x
f x

f x
x

x

x
n n

n

n
n

n

n

+ = −
′

= −
−

1

4

3

2

4

( )

( )
.

Note that f x( ) = 0 clearly has two solutions, namely

x = ± 24 . We use Newton’s method to find the decimal
equivalents.

x
x
x
x
x

1

2

3

4

1 5
1 2731481
1 1971498
1 1892858

=
≈
≈
≈

.
.
.
.

55

6

1 1892071
1 1892071

1 1892

≈
≈

≈ ±

.

.
.

x
xSolutions: 007

19. (a) Since 
dy

dx
x dy x dx= − = −3 3 3 32 2, ( ) .

(b) At the given values,

dy = − = =( )( . ) ( . ) . .3 2 3 0 05 9 0 05 0 452i

20. (a) Since 
dy

dx

x x x

x

x

x
=

+ −
+

= −
+

( )( ) ( )( )

( ) ( )

1 2 2 2

1

2 2

1

2

2 2

2

2 2
,,

dy
x

x
dx= −

+

2 2

1

2

2 2( )
.

(b) At the given values,

dy = − −

+ −
= −2 2 2

1 2
0 1

2 8

5
0 1

2

2 2 2

( )

[ ( ) ]
( . ) ( . )

= − 0 024. .

21. (a) Since 
dy

dx
x

x
x x x x x=

⎛

⎝⎜
⎞

⎠⎟
+ = +( ) (ln )( ) ln ,2 1

2 2

dy x x x dx= +( ln ) .2

(b) At the given values,

     dy = + = =[ ( ) ln( ) ]( . ) ( . ) .2 1 1 1 0 01 1 0 01 0 01

22. (a) Since 
dy

dx
x

x
x x=

−

⎛

⎝⎜
⎞

⎠⎟
− + −( ) ( ) ( )( )

1

2 1
2 1 1

2

2

= −

−
+ − = − + −

−
= −

−

=

x

x
x

x x

x

x

x

dy

2

2

2
2 2

2

2

21
1

1

1

1 2

1
1

( )
,

−−

−

2

1

2

2

x

x
dx.

(b) At the given values, dy = −

−
− = −1 2 0

1 0
0 2 0 2

2

2

( )

( )
( . ) . .

23. (a) Since 
dy

dx
e x dy x e dxx x= =sin sincos , (cos ) .

(b) At the given values,

dy e= − = − − =(cos )( )( . ) ( )( )( . ) . .sinπ π 0 1 1 1 0 1 0 1

24. (a) Since 
dy

dx

x x= − −
⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟
3 1

3
1

3

1

3
csc cot

= −
⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟

= −
⎛

⎝⎜
⎞

⎠

csc cot ,

csc

1
3

1
3

1
3

x x

dy
x

⎟⎟ −
⎛

⎝⎜
⎞

⎠⎟
cot .1

3

x
dx

(b) At the given values,

dy = −
⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟

=

csc cot ( . )

. csc

1
1

3
1

1

3
0 1

0 1
2

3
ccot .

2

3
0 205525≈

25. (a) y xy x+ − = 0
y x x

y
x

x

( )1

1

+ =

=
+

Since 
dy

dx

x x

x x
=

+ −
+

=
+

( )( ) ( )( )

( ) ( )
,

1 1 1

1

1

12 2

dy
dx

x
=

+( )
.

1 2

(b) At the given values,

dy =
+

=0 01

0 1
0 01

2

.

( )
. .

26. (a) 2 2y x xy= −
2 2

2 2
2

2

dy xdx xdy ydx
dy x x y dx

dy
x y

x

= − −
+ = −

= −
+

⎛
( ) ( )

⎝⎝⎜
⎞

⎠⎟
dx

(b) At the given values, and y = 1 from the original

equation, dy = −
+

⎛
⎝⎜

⎞
⎠⎟

− = −2 2 1

2 2
0 05 0 0375

( )
( . ) .
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27. 
dy

dx
x= −1 2

dy
x

x
dx

dy
x

x
dx

= −
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= −
−

2

2 1

1

2

2

28. 
dy

dx
e xx= +5 5

dy e x dxx= +( )5 55 4

29. 
dy

dx
x= −tan 1 4

d

dx
u

u

du

dx
u x
du

dx

dy
x

tan− =
+

=

=

=
+

⎛

⎝⎜
⎞

1

2

2

1

1
4

4

4

1 16 ⎠⎠⎟
dx

30. 
dy

dx
xx= +( )8 8

d

dx
a a a

dy x dx

x x

x

=

= +

(ln )

( ln )8 8 8 7

31. (a) Δ = − = − =f f f( . ) ( ) . .0 1 0 0 21 0 0 21

(b) Since ′ = + ′ =f x x f( ) , ( ) .2 2 0 2

Therefore, df dx= = =2 2 0 1 0 2( . ) . .

(c) Δ − = − =f df 0 21 0 2 0 01. . .

32. (a) Δ = − = − =f f f( . ) ( ) . .1 1 1 0 231 0 0 231

(b) Since ′ = − ′ =f x x f( ) , ( ) .3 1 1 22

Therefore, df dx= = =2 2 0 1 0 2( . ) . .

(c) Δ − = − =f df 0 231 02 0 031. .

33. (a) Δ = − = − = −f f f( . ) ( . )0 55 0 5
20

11
2

2

11

(b) Since ′ = − ′ = −−f x x f( ) , ( . ) .2 0 5 4

Therefore, df dx= − = − = − = −4 4 0 05 0 2
1

5
( . ) .

(c) Δ − = − + =f df
2

11

1

5

1

55

34. (a) Δ = − = − =f f f( . ) ( ) . .1 01 1 1 04060401 1 0 04060401

(b) Since ′ = ′ =f x x f( ) , ( ) .4 1 43

Therefore, df dx= = =4 4 0 01 0 04( . ) . .

(c) Δ − = − =f df 0 04060401 0 04 0 00060401. . .

35. Note that 
dV

dr
r dV r dr= =4 42 2π π, .  When r changes from

a to a + dr, the change in volume is approximately

4 2πa dr.

36. Note that 
dS

dr
r dS r dr= =8 8π π, .so  When r changes from

a to a + dr, the change in surface area is approximately
8πa dr.

37. Note that 
dV

dx
x dV x dx= =3 32 2, .so  When x changes from

a to a + dx, the change in volume is approximately

3 2a  dx.

38. Note that 
dS

dx
x dS x dx= =12 12, .so  When x changes from

a to a + dx, the change in surface area is approximately
12a dx.

39. Note that 
dV

dr
rh dV rh dr= =2 2π π, .so  When r changes

from a to a + dr, the change in volume is approximately

40. Note that 
dS

dh
r dS r dh= =2 2π π, .so  When h changes from

a to a + dh, the change in lateral surface area is
approximately 2πr dh.

41. A r
dA r dr

dA

=
=
= =

π
π
π

2

2
2

2 10 0 1 6 3( )( . ) . in

42. ν π

π
π

=

=
= =

4

3
4

4 8 0 3 241

3

2

2 2

r

dV r dr

dV ( ) ( . ) in

43. ν =
=
= =

s

dV s ds

dV

3

2

2
3

3 15 0 2 135( ) ( . ) cm2

44.   A s= 3

4
2

dA s ds

dA

=

= =

3

2

3

2
20 0 5 8 7 2( )( . ) . cm

45. (a) Note that ′ = =f ( ) cos .0 0 1

L x f f x x x( ) ( ) ( )( )= + ′ − = + = +0 0 0 1 1 1

(b) f L( . ) ( . ) .0 1 0 1 1 1≈ =
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45. Continued

(c) The actual value is less than 1.1. This is because the
derivative is decreasing over the interval [0, 0.1], which
means that the graph of f (x) is concave down and lies
below its linearization in this interval.

46. (a) Note that A r
dA

dr
r dA r dr= = =π π π2 2 2and so, .

When r changes from a to a + dr, the change in area is
approximately 2πa dr. Substituting 2 for a and 0.02 for dr,
the change in area is approximately
2 2 0 02 0 08 0 2513π π( )( . ) . .= ≈

(b) 
dA

A
= = =0 08

4
0 02 2

.
. %

π
π

47. Let A = cross section area, C = circumference, and

D = diameter. Then D
C=
π

, so
dD

dC
= 1

π

and dD dC= 1

π
. Also, A

D C C=
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
=π π

π π2 2 4

2 2 2

,

so
dA

dC

C=
2π

and dA
C

dC=
2π

. When C increases from

10π in. to 10π + 2 in. the diameter increases by

dD = = ≈1
2

2
0 6366

π π
( ) . in. and the area increases by

approximately dA = =10

2
2 10

π
π

( ) .in2

48. Let x = edge length and V = volume. Then V = x3,  and

so dV x dx= 3 2 .  With x = 10 cm and dx = 0.01x = 0.1 cm,

we have V = 103 = 1000 cm3  and

dV = 3(10) (0.1)2 = 30 cm3,  so the percentage error in the

volume measurement is approximately

dV

V
= = =30

1000
0 03 3. %.

49. Let x = side length and A = area. Then A = x2 and

dA

dx
x dA x dx= =2 2, .so  We want dA A≤ 0 02. ,  which

gives 2 0 02 0 012x dx x dx x≤ ≤. , . .or  The side length

should be measured with an error of no more than 1%.

For θ π= ° =75
5

12
radians, we have

dθ π π< =0 04
5

12

5

12
0 01. sin cos . radian. The angle should be

measured with an error of less than 0.01 radian (or
approximately 0.57 degrees), which is a percentage error of
approximately 0.76%.

50. (a) Note that V r h r D= = =π π π2 2 210 2 5. , where D is the

interior diameter of the tank. Then
dV

dD
D= 5π ,

so dV DdD= 5π . We want dV V≤ 0 01. , which

gives 5 0 01 2 5 2π πDdD D≤ . ( . ), or dD D≤ 0 005. . The

interior diameter should be measured with an error of no
more than 0.5%.

 (b) Now we let D represent the exterior diameter of the
tank, and we assume that the paint coverage rate
(number of square feet covered per gallon of paint) is
known precisely. Then, to determine the amount of
paint within 5%, we need to calculate the lateral surface
area S with an error of no more than 5%. Note that

S rh D
dS

dD
dS dD= = = =2 10 10 10π π π π, .so and We

want dS S≤ 0 05. ,  which gives 10 0 05 10π πdD D≤ . ( ),

or dD D≤ 0 05. .  The exterior diameter should be
measured with an error of no more than 5%.

51. Note that V r h= π 2 , where h is constant. Then
dV

dr
rh= 2π .

The percent change is given by

dV

V

rhdr

r h

dr

r

r

r
= = = =2

2 2
0 1

0 2
2

π
π

. %
. %.

52. Note that 
dV

dh
h dV h dh= =3 32 2π π, .so  We want

dV V≤ 0 01. ,  which gives 3 0 012 3π πh dh h≤ . ( ),

or dh
h≤ 0 01

3

.
. The height should be measured with an

error of no more than 
1

3
%.

53. Since V r= 4

3
3π ,  we have

dV r dr r
r= =

⎛

⎝⎜
⎞

⎠⎟
=4 4

1

16 4
2 2

2

π π
π

.  The volume error in

each case is simply 
r2

3

4
in .

Sphere
Type

True
Radius

Tape
error

Radius
Error

Volume
Error

Orange 2 in. 1 8/ in. 1 16/ π in. 1in.3

Melon 4 in. 1 8/ in. 1 16/ π in. 4 in.3

Beach
Ball

7 in. 1 8/ in. 1 16/ π in. 12 25. in.3
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54. Since A = 4 2πr ,  we have dA rdr r
r= =

⎛

⎝⎜
⎞

⎠⎟
=8 8

1

16 2
π π

π
.

The surface area error in each case is simply 
r

2
in2.

Sphere
Type

True
Radius

Tape
Error

Radius
Error

Volume
Error

Orange 2 in. 1 8/ in. 1 16/ π in. 1in.2

Melon 4 in. 1 8/ in. 1 16/ π in. 2 in.2

Beach Ball 7 in 1 8/ in. 1 16/ π in. 3 5. in.2

55. We have 
dW

dg
bg dW bg dg= − = −− −2 2, .so

Then 
dW

dW

b dg

b dg

moon

earth

= −

−
=

−

−

( . )

( ) .

5 2

32

32

5 2

2

2

2

2
≈≈ 37 87. .  The ratio is

about 37.87 to 1.

56. (a) Note that T L g
dT

dg
L g= = −− −2 1 2 1 2 1 2 3 2π π, so  and

dT L g dg= − −π 1 2 3 2 .

(b) Note that dT and dg have opposite signs. Thus, if
 g increases, T decreases and the clock speeds up.

(c)                − =−π L g dg dT1 2 3 2

− =
≈ −

−π ( ) ( ) .
.

100 980 0 001
0 9765

1 2 3 2 dg
dg

Since dg g≈ − ≈ − =0 9765 980 0 9765 979 0235. , . . .

57. True. A look at the graph reveals the problem. The graph
decreases after x =1 toward a horizontal asymptote of
x = 0, so the x-intercepts of the tangent lines keep getting
bigger without approaching a zero.

58. False. By the product rule, d uv udv vdu( ) .= +

59. B. f x e
f x e
L x e e x
L x ex

x

x
( )
( )
( ) ( )
( )

=
′ =

= + −
=

1 1 1

60. A. y x
dy x dx
dy

=
= =
= −

tan
(sec ) (sec ) .

.

2 2 0 5
0 25

π

61. D. f x x x( ) = − +3 2

    

′ = −

= −
+

−

= − −

+

f x x

x x
x x

x

x

n n
n n

n

( )

( )

1 3

2

1 3

1
1 1

2

1

3

2

2

3 ++
−

=

= − − +
−

=

2

1 3 1
2

2
2 2 2

1 3 2

18

11

2

3

3

2

( )
( )

( )
x

62. A. f x x x( ) ,= =3 64

′ = =

= + −

=

−f ( ) ( )

( )

.

64
1

3
64

1

48

66 4
1

48
66 64

66 4 0

2 3

3

3 442

The calculator returns 4.041, or a 0.01% difference.

63. If ′ ≠f x( ) ,0  we have x x
f x

f x
x

f x
x

2 1
1

1
1

1
1

0= −
′

= −
′

=
( )

( ) ( )
.

Therefore, x x
2 1

= ,  and all later approximations are also

equal to x1.

64. If x1 = h, then ′ =f x
h

( )
1 1 2

1

2
 and

x h
h

h

h h h
2

1 2

1 2

1

2

2= − = − = − .  If x1 = −h, then

′ = −f x
h

( )
1

1

2
 and x h

h

h

h h h
2

1 2

1 2

1

2

2= − −
−

= − + =

65. Note that ′ = −f x x( )
1

3
2 3  and so

x x
f x

f x
x

x

x
x x

n n
n

n
n

n

n

n n+ −
= −

′
= − = − =

1

1 3

2 3

3

3
( )

( )

/

/
−−2x

n
. For

x1 = 1, we have x x x
2 3 4

2 4 8= − = = −, , ,  and

x x
n

n
5

116 2= = −; .

[–10, 10] by [–3, 3]

66. (a)   i. Q a f a( ) ( )=  implies that b f a
0

= ( ).

 ii. Since ′ = + − ′ = ′Q x b b x a Q a f a( ) ( ), ( ) ( )
1 2

2  implies

      that b f a
1

= ′( ).
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66. Continued

iii. Since ′′ = ′′ = ′′Q x b Q a f a( ) , ( ) ( )2
2

 implies that

    b
f a

2 2
= ′′( )

In summary, b f a b f a b
f a

0 1 2 2
= = ′ = ′′

( ), ( ),
( )

.and

(b) f x x

f x x x

f

( ) ( )

( ) ( ) ( ) ( )

(

= −
′ = − − − = −
′′

−

− −
1

1 1 1 1

1

2 2

xx x x) ( ) ( ) ( )= − − − = −− −2 1 1 2 13 3

Since f f f( ) , ( ) , ( ) ,0 1 0 1 0 2= ′ = ′′ =and the coefficients are

b b b
0 1 2

1 1
2

2
1= = = =, , .and  The quadratic approximation

is Q x x x( ) .= + +1 2

(c) 

      As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

(d) g x x
g x x
g x x

( )
( )
( )

=
′ = −
′′ =

−

−

−

1

2

32

Since g g( ) , ( ) ,1 1 1 1= ′ = −  and ′′ =g ( ) ,1 2  the

coefficients are b b
o

= = −1 1
1

, ,  and b
2

2

2
1= = .  The

quadratic approximation is Q x x x( ) ( ) ( ) .= − − + −1 1 1 2

      As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical

(e)   h x x( ) ( ) /= +1 1 2

′ = +

′′ = − +

−

−

h x x

h x x

( ) ( )

( ) ( )

/

/

1

2
1

1

4
1

1 2

3 2

Since h h h( ) , ( ) , ( ) ,0 1 0
1

2
0

1

4
= ′ = ′′ = −and the

coefficients are b b b
0 1 2

1
1

2

1

4
2

1

8
= = =

−
= −, , .and

The quadratic approximation is Q x
x x

( ) .= + −1
2 8

2

      As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

(f) The linearization of any differentiable function u(x) at
x = a is L x u a u a x a b b x a( ) ( ) ( )( ) ( ),= + ′ − = + −0 1 where
b b0 1and are the coefficients of the constant and linear
terms of the quadratic approximation. Thus, the
linearization for f (x) at x = 0 is 1 + x; the linearization
for g(x) at x = 1 is 1 −  (x − 1) or 2 – x; and the

linearization for h(x) at x = 0 is 1
2

+ x
.

67. Finding a zero of sin x by Newton’s method would use the

recursive formula x x
x

x
x x

n n
n

n
n n+ = − = −

1

sin( )

cos( )
tan , and that

is exactly what the calculator would be doing. Any zero of
sin x would be a multiple of π.

68. Just multiply the corresponding derivative formulas by dx.

(a) Since 
d

dx
c d c( ) , ( ) .= =0 0

(b) Since 
d

dx
cu c

du

dx
d cu c du( ) , ( ) .= =

(c) Since 
d

dx
u v

du

dx

dv

dx
d u v du dv( ) , ( )+ = + + = +

(d) Since 
d

dx
u v u

dv

dx
v

du

dx
d u v u dv v du( ) , ( ) .i i= + = +

(e) Since 
d

dx

u

v

v
du

dx
u

dv

dx

v
d

u

v

vdu udv⎛

⎝⎜
⎞

⎠⎟
=

− ⎛

⎝⎜
⎞

⎠⎟
=

−
2

,
vv2

.

(f) Since 
d

dx
u nu

du

dx
d u nu dun n n n= =− −1 1, ( ) .

69. lim lim
x x

x

x

x x

x→ →
=

0 0

tan sin / cos

               

=
⎛

⎝⎜
⎞

⎠⎟

=
⎛

⎝⎜
⎞

⎠⎟

→

→

lim

lim li

x

x

x

x

x

x

0

0

1

1
cos

sin

cos
mm

x

x

x→

⎛

⎝⎜
⎞

⎠⎟

= =
0

1 1 1

sin

( )( ) .
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70. g a c E a g a f a c( ) , ( ) , ( ) ( )= = = =so if then and0 ff a( ).

Then .E x f x g x f x f a m x a( ) ( ) ( ) ( ) ( ) ( )= − = − − −

Thus, 
E x

x a

f x f a

x a
m

( ) ( ) ( )
.

−
= −

−
−

lim so lim
x a x a

f x f a

x a
f a

E x

x a→ →

−
−

= ′
−

= ′
( ) ( )

( ),
( )

ff a m( ) .−

Therefore, if the limit of 
E x

x a

( )

−
is zero, then m f a= ′( )  and

g (x) = L(x).

71. ′ =
+

+f x
x

x( ) cos
1

2 1

We have andf f( ) ( )0 1 0
3

2
= ′ =

L x f f x

x

( ) ( ) ( )( )= + ′ −

= +

0 0 0

1
3

2
The linearization is the sum of the two individual

linearizations, which are x for sin x and 1
1

2
1+ +x xfor .

Section 4.6 Related Rates (pp. 246–255)

Exploration 1 Sliding Ladder

  1. Here the x-axis represents the ground and the y-axis

represents the wall. The curve ( x y
1 1
, ) gives the position of

the bottom of the ladder (distance from the wall) at any

time t in 0 5≤ ≤t . The curve ( x y
2 2
, ) gives the position of

the top of the ladder at any time in 0 5≤ ≤t .

  2. 0 5≤ ≤t

  4. This is a snapshot at t ≈ 3. 1. The top of the ladder is
moving down the y-axis and the bottom of the ladder is
moving to the right on the x-axis. The end of the ladder is
accelerating. Both axes are hidden from view.

  6. 
dy

dt

T

T
= −

−

4

10 22 2( )

  7. ′ ≈ −y ( ) . .3 4 24 ft/sec2 The negative number means the
ladder is falling.

  8. Since lim
t

y t
→ −

′ = −∞
( / )

( ) ,
13 3

the speed of the top of the ladder

is infinite as it hits the ground.

Quick Review 4.6

  1. D = − + − = + =( ) ( )7 0 0 5 49 25 742 2

  2. D b a a b= − + − = +( ) ( )0 02 2 2 2

  3. Use implicit differentiation.
d

dx
xy y

d

dx
x y

x
dy

dx
y y

dy

dx

( ) ( )

( ) ( )

2

2 2 1 2 1

2+ = +

+ + = ++

+ − = −

= −
+ −

dy

dx

x y
dy

dx
y

dy

dx

y

x y

( )2 2 1 1 2

1 2

2 2 1

  4. Use implicit differentiation.
d

dx
x y

d

dx
xy

x y
dy

dx
y

( sin ) ( )

( )(cos ) (sin )( )

= −

+

1

1 == − −

+ = − −

= − −

x
dy

dx
y

x x y
dy

dx
y y

dy

dx

y

( )

( cos ) sin

s

1

iin

cos
sin

cos

y

x x y
dy

dx

y y

x x y

+

= − +
+

  5. Use implicit differentiation.
d

dx
x

d

dx
y

x y
dy

dx
dy

dx

x

y
dy

dx

2

2

2

2

2

2

=

=

=

=

tan

sec

sec

xx ycos2

  6. Use implicit differentiation.
d

dx
x y

d

dx
x

x y

dy

dx
dy

dx

ln( ) ( )+ =

+
+⎛

⎝⎜
⎞
⎠⎟

=

+ =

2

1
1 2

1 22

2 2 1

( )x y

dy

dx
x y

+

= + −

  7. Using A(−2, 1) we create the parametric equations
x = −2 + at and y = 1 + bt, which determine a line passing
through A at t = 0. We determine a and b so that the line
passes through B(4, −3) at t = 1. Since 4 = −2 + a, we have
a = 6, and since –3 = 1 + b, we have b = − 4. Thus, one
parametrization for the line segment is x = −2 + 6t,
y = 1 – 4t, 0 ≤ t ≤ 1. (Other answers are possible.)
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  8. Using A(0, −4), we create the parametric equations
x = 0 + at and y = −4 + bt, which determine a line passing
through A at t = 0. We now determine a and b so that the
line passes through B(5, 0) at t = 1. Since 5 = 0 + a, we have
a = 5, and since 0 = −4 + b, we have b = 4. Thus, one
parametrization for the line segment is x = 5t, y = −4 + 4t, 0
≤ t ≤ 1. (Other answers are possible.)

  9. One possible answer: 
π π
2

3

2
≤ ≤t

10. One possible answer: 
3

2
2

π π≤ ≤t

Section 4.6 Exercises

  1. Since 
dA

dt

dA

dr

dr

dt
= , we have 

dA

dt
r

dr

dt
= 2π ,

  2. Since 
dS

dt

dS

dr

dr

dt
= , we have 

dS

dt
r

dr

dt
= 8π .

  3. (a) Since 
dV

dt

dV

dh

dh

dt
= , we have 

dV

dt
r

dh

dt
= π 2 .

(b) Since 
dV

dt

dV

dr

dr

dt
= , we have 

dV

dt
rh

dr

dt
= 2π .

(c) 
dV

dt

d

dt
r h

d

dt
r h= =π π2 2( )

dV

dt
r

dh

dt
h r

dr

dt
dV

dt
r

dh

dt

= +⎛
⎝⎜

⎞
⎠⎟

= +

π

π π

2

2

2

2

( )

rrh
dr

dt

  4. (a) 
dP

dt

d

dt
RI= ( )2

dP

dt
R

d

dt
I I

dR

dt
dP

dt
R I

dI

dt
I

dR

dt

= +

= ⎛
⎝⎜

⎞
⎠⎟

+

2 2

22

ddP

dt
RI

dI

dt
I

dR

dt
= +2 2

(b) If P is constant, we have 
dP

dt
= 0, which means

2 0
2 22

3
RI

dI

dt
I

dR

dt

dR

dt

R

I

dI

dt

P

I

dI

dt
+ = = − = −, .or

  5. 
ds

dt

d

dt
x y z= + +2 2 2

ds

dt x y z

d

dt
x y z=

+ +
+ +1

2 2 2 2

2 2 2( )

ds

dt x y z
x

dx

dt
y

dy

dt
z

dz

dt
=

+ +
+ +⎛

⎝⎜
⎞
⎠⎟

1

2
2 2 2

2 2 2

ds

dt

x
dx

dt
y

dy

dt
z

dz

dt

x y z
=

+ +

+ +2 2 2

  6. 
dA

dt

d

dt
ab= ⎛

⎝⎜
⎞
⎠⎟

1

2
sinθ

dA

dt

da

dt
b a

db

dt
ab

d

dt
= + +⎛

⎝
1

2
i i i i isin sin sinθ θ θ⎜⎜

⎞
⎠⎟

= + +⎛dA

dt
b

da

dt
a

db

dt
ab

d

dt

1

2
sin sin cosθ θ θ θ

⎝⎝⎜
⎞
⎠⎟

  7. (a) Since V  is increasing at the rate of 1 volt/sec,
dV

dt
= 1 volt/sec.

(b) Since I is decreasing at the rate of
1

3

1

3
amp/sec, amp/sec.

dI

dt
= −

 (c) Differentiating both sides of V = IR, we have

dV

dt
I

dR

dt
R

dI

dt
= + .

(d) Note that V IR=  gives 12 = 2R, so R = 6 ohms. Now
substitute the known values into the equation in (c).

   1 2 6
1

3
= + −⎛

⎝⎜
⎞
⎠⎟

dR

dt

3 2

3

2

=

=

dR

dt
dR

dt
ohms/sec

R is changing at the rate of 
3

2
 ohms/sec. Since this

value is positive, R is increasing.

  8. Step 1:
r = radius of plate
A = area of plate

Step 2:

At the instant in question, 
dr

dt
r= =0 01 50. cm/sec, cm.

Step 3:

We want to find 
dA

dt
.

Step 4:

A r= π 2

Step 5:

dA

dt
r

dr

dt
= 2π

Step 6:

dA

dt
= =2 50 0 01 2π π( )( . ) / seccm

At the instant in question, the area is increasing at the rate

of πcm /2 sec.



208 Section 4.6

  9. Step 1:
l = length of rectangle
w = width of rectangle
A = area of rectangle
P = perimeter of rectangle
D = length of a diagonal of the rectangle

Step 2:
At the instant in question,

dl

dt

dw

dt
l= − = =2 2 12cm/sec, cm/sec, cm, and cm.w = 5

Step 3:

We want to find 
dA

dt

dP

dt

dD

dt
, , .and

Steps 4, 5, and 6:

(a) A = lw

dA

dt
l

dw

dt
w

dl

dt
dA

dt

= +

= + − =( )( ) ( )( )12 2 5 2 14 cm2 //sec

The rate of change of the area is 14 cm /sec.2

(b) P l w= +2 2

dP

dt

dl

dt

dw

dt
dP

dt

= +

= − + =

2 2

2 2 2 2 0( ) ( ) cm/sec

The rate of change of the perimeter is 0 cm/sec.

(c) D l w= +2 2

dD

dt l w
l

dl

dt
w

dw

dt

l
dl

dt
w

dw

dt=
+

+⎛
⎝⎜

⎞
⎠⎟

=
+1

2
2 2

2 2 ll w
dD

dt

2 2

2 2

12 2 5 2

12 5

14

13

+

= − +

+
= −( )( ) ( )( )

cm/seec

The rate of change of the length of the diameter is

− 14

13
cm/sec.

(d) The area is increasing, because its derivative is positive.
The perimeter is not changing, because its derivative is
zero. The diagonal length is decreasing, because its
derivative is negative.

10. Step 1:
x, y, z = edge lengths of the box
V = volume of the box
S = surface area of the box
s = diagonal length of the box

      Step 2:
At the instant in question,

dx

dt

dy

dt

dz

dt
= = − =1 2 1m/sec, m/sec, m/ ,sec xx

y z

=

= =

4

3 2

m

m and m

,

, .

Step 3:

We want to find 
dV

dt

dS

dt

ds

dt
, , .and

Steps 4, 5, and 6:

(a) V xyz=

dV

dt
xy

dz

dt
xz

dy

dt
yz

dx

dt
dV

dt

= + +

= +( )( )( ) ( )4 3 1 4 (( )( ) ( )( )( )2 2 3 2 1 2− + = m /sec3

The rate of change of the volume is 2 m /sec3 .

(b) S xy xz yz= + +2( )

dS

dt
x

dy

dt
y

dx

dt
x

dz

dt
z

dx

dt
y

dz

dt
z

dy

dt
2 + + + + +⎛

⎝⎜
⎞⎞
⎠⎟

= − + + +dS

dt
2 4 2 3 1 4 1 2 1[( )( ) ( )( ) ( )( ) ( )( )

(2)(1) m /sec2+ + + − =( )( ) ( )( )]3 1 2 2 0

The rate of change of the surface area is 0 m /sec.2

(c) s x y z= + +2 2 2

ds

dt x y z
x

dx

dt
y

dy

dt
z

dz

dy

x

=
+ +

+ +
⎛
⎝⎜

⎞
⎠⎟

=

1

2
2 2 2

2 2 2

ddx

dt
y

dy

dt
z

dz

dt

x y z
ds

dt

+ +

+ +

= + −

2 2 2

4 1 3 2( )( ) ( )( )) ( )( )+

+ +
= =2 1

4 3 2

0

29
0

2 2 2
m/sec

The rate of change of the diagonal length is 0 m/sec.

11. Step 1:
r = radius of spherical balloon
S = surface area of spherical balloon
V = volume of spherical balloon

     Step 2:

At the instant in question, 
dV

dt
= 100π ft /min3 and r = 5 ft.

Step 3:

We want to find the values of 
dr

dt
 and 

dS

dt
.

      Steps 4, 5, and 6:

(a) V r= 4

3
3π

dV

dt
r

dr

dt
dr

dt
dr

dt

=

=

=

4

100 4 5

1

2

2

π

π π ( )

ft/min

The radius is increasing at the rate of 1 ft/min.
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11. Continued

(b) S r= 4 2π
dS

dt
r

dr

dt
dS

dt
dS

dt

=

=

=

8

8 5 1

40

π

π

π

( )( )

/ minft2

The surface area is increasing at the rate of 40π
ft /min.2

12. Step 1:
r = radius of spherical droplet
S = surface area of spherical droplet
V = volume of spherical droplet

     Step 2:
No numerical information is given.

     Step 3:

We want to show that
dr

dt
is constant.

Step 4:

S r V r
dv

dt
kS= = =4

4

3
2 3π π, , for some constant k

Steps 5 and 6:

Differentiating V r= 4

3
3π , we have

dV

dt
r

dr

dt
= 4 2π .

Substituting kS for
dV

dt
and S for 4 2πr , we

have kS S
dr

dt
= , or S

dr

dt
k= .

13. Step 1:
s = (diagonal) distance from antenna to airplane
x = horizontal distance from antenna to airplane

      Step 2:
At the instant in question,

s
ds

dt
= =10 300mi and mph.

Step 3:

We want to find 
dx

dt
.

Step 4:

x s x s2 2 249 49+ = = −or

      Step 5:

dx

dt s
s

ds

dt

s

s

dt

dt
=

−

⎛
⎝⎜

⎞
⎠⎟

=
−

1

2 49
2

492 2

      Step 6:

dx

dt
=

−
= ≈10

10 49
300

3000

51
420 08

2
( ) .mph mph

The speed of the airplane is about 420.08 mph.

14. Step 1:

      s = length of kite string
x = horizontal distance from Inge to kite

      Step 2:

At the instant in question,
dx

dt
= 25  ft/sec and s = 500 ft

Step 3:

We want to find 
ds

dt
.

Step 4:

x s2 2 2300+ =

Step 5:

2 2x
dx

dt
s

ds

dt
=  or x

dx

dt
s

ds

dt
=

     Step 6:

At the instant in question, since x s2 2 2300+ = ,  we have

x s= − = − =2 2 2 2300 500 300 400.

Thus ( )( ) ( ) , ,400 25 500= ds

dt

ds

dt
so  so 

ds
dt

= 20 ft/sec. Inge

must let the string out at the rate of 20 ft/sec.

15. Step 1:

     The cylinder shown represents the shape of the hole.
r = radius of cylinder
V = volume of cylinder

      Step 2:

At the instant in question, 
dr

dt
= =

0 001

3

1

3000

.

min

in.
 in./min

and (since the diameter is 3.800 in.), r = 1.900 in.

      Step 3:

We want to find 
dV

dt
.

      Step 4:

V r r= =π π2 26 6( )

      Step 5:

dV

dt
r

dr

dt
= 12π
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15. Continued
      Step 6:

dV

dt
= ⎛

⎝⎜
⎞
⎠⎟

= =

≈

12 1 900
1

3000

19

2500
0 0076π π π( . ) .

00 0239. in /min.3

The volume is increasing at the rate of approximately

0.0239 im /min.3

16. Step 1:

      r = base radius of cone
h = height of cone
V = volume of cone

      Step 2:

At the instant in question, h = 4 m and 
dV

dt
= 10 m /min.3

Step 3:

We want to find 
dh

dt
 and 

dr

dt
.

Step 4:

Since the height is 
3

8
 of the base diameter, we have

h r= 3

8
2( )  or r h= 4

3
.

We also have V r h h h
h= = ⎛

⎝⎜
⎞
⎠⎟

=1

3

1

3

4

3

16

27
2

2 3

π π π
.  We will

use the equations V
h= 16

27

3π
 and r h= 4

3
.

Step 5 and 6:

(a) 
dV

dt

h dh

dt
= 16

9

2π

10
16 4

9

2

= π ( ) dh

dt
dh

dt
= =45

128

1125

32π π
m/ cm/min min

The height is changing at the rate of
1125

32
11 19

π
≈ . / min.cm

(b) Using the results from Step 4 and part (a), we have

dr

dt

dh

dt
= = ⎛

⎝⎜
⎞
⎠⎟

=4

3

4

3

1125

32

375

8π π
cm/min.

The radius is changing at the rate of

375

8
14 92

π
≈ . min.cm/

17. Step 1:
45 m
r

h

6 m

r = radius of top surface of water
h = depth of water in reservoir
V = volume of water in reservoir

Step 2:

At the instant in question, 
dV

dt
= −50 m /min3 and h = 5  m.

Step 3:

We want to find − dh

dt
 and 

dr

dt
.

Step 4:

Note that 
h

r
= 6

45
 by similar cones, so r h= 7 5. .

Then V r h h h h= = =1

3

1

3
7 5 18 752 2 3π π π( . ) .

Steps 5 and 6:

(a) Since V h
dV

dt
h

dh

dt
= =18 75 56 253 2. , . .π π

Thus − =50 56 25 52. ( ) ,π dh

dt
 and

so 
dh

dt
= − 8

225π
 m/min = − 32

9π
cm/min.

The water level is falling by 
32

9
1 13

π
≈ . cm/min.

(Since
dh

dt
< 0,  the rate at which the water level is

falling is positive.)

(b) Since r h
dr

dt

dh

dt
= = = −7 5 7 5

80

3
. , .

π
 cm/min. The rate of

change of the radius of the water’s surface is

− ≈ −80

3
8 49

π
. cm/min.

18. (a) Step 1:
y = depth of water in bowl
V = volume of water in bowl

            Step 2:

At the instant in question,
dV

dt
= −6 m /min3  and

y = 8 m.

            Step 3:

We want to find the value of 
dy

dt
.

Step 4:

V y y= −π
3

392 ( )  or V y y= −13
3

2 3π π
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18. Continued

Step 5:
dV

dt
y y

dy

dt
= −( )26 2π π

           Step 6:

− = −⎡
⎣

⎤
⎦

− =

= −

6 26 8 8

6 144

1

24

2π π

π

( ) ( )
dy

dt
dy

dt
dy

dt ππ

π

≈ −

− ≈ −

0 01326

25

6
1 326

.

.

m/min

or cm/min

(b) Since r y2 2 213 13+ − =( ) ,

r y y y= − − = −169 13 262 2( ) .

(c) Step 1:
y ==== depth of water
r = radius of water surface
V = volume of water in bowl

      Step 2:

At the instant in question, 
dV

dt
= −6  m /min,3 y = 8 m,

and therefore (from part (a)) 
dy

dt
= − 1

24π
m/min.

Step 3:

We want to find the value of 
dr

dt
.

Step 4:

From part (b), r y y= −26 2 .

Step 5:
dr

dt y y
y

dy

dt

y

y y

dy

dt
=

−
− = −

−

1

2 26
26 2

13

262 2
( )

Step 6:

dr

dt
= −

− −
⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

13 8

26 8 8

1

24

5

12

1

242( ) π π

== − ≈ −5

288
0 00553

π
. m/min

or − ≈ −125

72
0 553

π
. cm/min

19. Step 1:
x = distance from wall to base of ladder
y = height of top of ladder
A = area of triangle formed by the ladder, wall, and ground
θ  = angle between the ladder and the ground

Step 2:

At the instant in question, x = 12 ft and 
dx

dt
= 5 ft/sec.

Step 3:

We want to find − dy

dy

dA

dt

d

dt
, , .and

θ

      Steps 4, 5, and 6:

(a) x y2 2 169+ =

2 2 0x
dx

dt
y

dy

dt
+ =

To evaluate, note that, at the instant in question,

y x= − = − =169 169 12 52 2 .

Then 2 12 5 2 5 0( )( ) ( )+ =dy

dt

dy

dt

dy

dt
= − − =⎛

⎝⎜
⎞
⎠⎟

12 12ft/sec or ft/sec

The top of the ladder is sliding down the wall at the rate
of 12 ft/sec. (Note that the downward rate of motion is
positive.)

(b) A xy= 1

2

dA

dt
x

dy

dt
y

dx

dt
= +⎛

⎝⎜
⎞
⎠⎟

1

2

Using the results from step 2 and from part (a), we have

dA

dt
= − + = −1

2
12 12 5 5

119

2
[( )( ) ( )( )] ft /sec.2 The area of

the triangle is changing at the rate of –59.5 ft /sec.2

(c) tanθ = y

x

sec2
2

θ θd

dt

x
dy

dt
y

dx

dt
x

=
−

Since tan ,θ = 5

12
 we have

for and so0
2

12

13

1

12

13

2≤ <⎛
⎝⎜

⎞
⎠⎟

=
⎛

θ π θ θcos sec

⎝⎝⎜
⎞
⎠⎟

=
2

169

144
.

Combining this result with the results from step 2 and

from part (a), we have 
169

144

12 12 5 5

122

d

dt

θ = − −( )( ) ( )( )
, so

d

dt

θ = −1  radian/sec. The angle is changing at the rate

of –1 radian/sec.

20. Step 1:

      h = height (or depth) of the water in the trough
V = volume of water in the trough

Step 2:

At the instant in question, 
dV

dt
= 2 5. / minft3  and h = 2 ft.
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20. Continued

Step 3:

We want to find 
dh

dt
.

Step 4:

The width of the top surface of the water is 
4

3
h,  so we

have V h h V h= ⎛
⎝⎜

⎞
⎠⎟

=1

2

4

3
15 10 2( ) ( ), or

Step 5:
dV

dt
h

dh

dt
= 20

      Step 6:

2 5 20 2

0 0625
1

16

. ( )

.

=

= =

dh

dt
dh

dt
ft/min

The water level is increasing at the rate of 
1

16
ft/min.

21. Step 1:
l = length of rope
x = horizontal distance from boat to dock
θ = angle between the rope and a vertical line

Step 2:

At the instant in question, 
dl

dt
= −2 ft/sec  and l = 10 ft.

Step 3:

We want to find the values of − dx

dt
 and 

d

dt

θ
.

Steps 4, 5, and 6:

(a) x l= −2 36

dx

dt

l

l

dl

dt

dx

dt

=
−

=
−

− = −

2

2

36
10

10 36
2 2 5( ) . ft/secc

The boat is approaching the dock at the rate of
2.5 ft/sec.

(b) θ = −cos 1 6

l

d

dt

l

t

dl

dt

θ = −

− ⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

1

1
6

6
2 2

d

dt

θ = −
−

−⎛
⎝⎜

⎞
⎠⎟

− = −1

1 0 6

6

10
2

3

202 2
.

( )  radian/sec

The rate of change of angle θ is − 3

20
 radian/sec.

22. Step 1:
x = distance from origin to bicycle
y = height of balloon (distance from origin to balloon)
s = distance from balloon to bicycle

      Step 2:

We know that 
dy

dt
 is a constant 1 ft/sec and 

dx

dt
 is a

constant 17 ft/sec. Three seconds before the instant in
question, the values of x and y are x = 0 ft and y = 65 ft.
Therefore, at the instant in question x = 51 ft and y = 68 ft.

      Step 3:

We want to find the value of 
ds

dt
 at the instant in question.

Step 4:

s x y= +2 2

      Step 5:

ds

dt x y
x

dx

dt
y

dy

dt

x
dx

dt
y

dy

dt=
+

+⎛
⎝⎜

⎞
⎠⎟

=
+1

2
2 2

2 2 xx y2 2+

       Step 6:

ds

dt
= +

+
=( )( ) ( )( )51 17 68 1

51 68
11

2 2
ft/sec

The distance between the balloon and the bicycle is
increasing at the rate of 11 ft/sec.

23.
dy

dt

dy

dt

dx

dt
x x

dx

dt

x

x
= = − + = −

+
−10 1 2

20

1
2 2

2
( ) ( )

( ))

dx

dt

Since 
dx

dt
= 3cm/sec, we have

dy

dt

x

x
= −

+
60

1 2 2( )
cm/sec.

(a)
dy

dt
= − −

+ −
= =60 2

1 2

120

5

24

52 2 2

( )

[ ( ) ]
cm/sec

(b)
dy

dt
= −

+
=60 0

1 0
0

2 2

( )

( )
cm/sec

(c)
dy

dt
= −

+
≈ −60 20

1 20
0 00746

2 2

( )

( )
. cm/sec

24.
dy

dt

dy

dx

dx

dt
x

dx

dt
= = −( )3 42

Since 
dx

dt
= −2 cm/sec,  we have 

dy

dt
x= −8 6 2 cm/sec.

(a)
dy

dt
= − − = −8 6 3 462( ) cm/sec

(b)
dy

dt
= − =8 6 1 22( ) cm/sec

(c)
dy

dt
= − = −8 6 4 882( ) cm/sec
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25. Step 1:
y

x

(x, y)

�

x = x-coordinate of particle’s location
y = y-coordinate of particle’s location
θ = angle of inclination of line joining the particle to the

origin.

      Step 2:
At the instant in question,
dx

dt
= 10 m/sec and x = 3 m.

      Step 3:

We want to find 
d

dt

θ
.

      Step 4:

Since y x= 2 , we have tan θ = = =y

x

x

x
x

2

 and so,

for x > 0,

θ = −tan .1 x

 Step 5:

d

dt x

dx

dt

θ =
+
1

1 2

       Step 6:

d

dt

θ =
+

=1

1 3
10 1

2
( ) radian/sec

The angle of inclination is increasing at the rate of
1 radian/sec.

26. Step 1:

(x, y)

y

x
�

x  = x-coordinate of particle’s location
y = y-coordinate of particle’s location
θ = angle of inclination of line joining the particle to the

origin

      Step 2:

At the instant in question,
dx

dt
x= − = −8 4m and m./ sec

      Step 3:

We want to find 
d

dt

θ
,

Step 4:

Since y x= − ,  we have tan ( ) ,/θ = = − = − −y

x

x

x
x 1 2

and so, for x < 0,

θ π π= + − − = − −− − −tan [ ( ) ] tan ( ) ./ /1 1 2 1 1 2x x

      Step 5:

d

dt x
x

dθ = −
+ −

− − −⎛
⎝⎜

⎞
⎠⎟−

−1

1

1

2
1

1 2 2
3 2

[( ) ]
( ( ) ( )

/
/ xx

dt

x
x

dx

dt

x x

dx

d

= −
− ⎛

⎝⎜
⎞
⎠⎟

−

=
− −

1

1
1

1

2

1

2 1

3 2( )

( )

/

tt

Step 6:

d

dt

θ =
− −

− =1

2 4 4 1
8

2

5( )
( )  radian/sec

The angle of inclination is increasing at the rate of
2

5
 radian/sec.

27. Step 1:
r = radius of balls plus ice
S = surface area of ball plus ice
V = volume of ball plus ice

      Step 2:
At the instant in question,
dV

dt
r= − = − = =8 8

1

2
20 10mL/min cm /minand cm.3 ( )

      Step 3:

We want to find − dS

dt
.

Step 4:

We have V r= 4

3
3π  and S r= 4 2π .  These equations can be

combined by noting that r
V= ⎛

⎝⎜
⎞
⎠⎟

3

4

1 3

π

/

,  so S
V= ⎛

⎝⎜
⎞
⎠⎟

4
3

4

2 3

π
π

/

Step 5:

dS

dt

V dV

dt
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−

4
2

3

3

4

3

4

1 3

π
π π

/

22
3

4

1 3
V dV

dtπ
⎛
⎝⎜

⎞
⎠⎟

− /

Step 6:

Note that V = =4

3
10

4000

3
3π π

( ) .

dS

dt
= ⎛

⎝⎜
⎞
⎠⎟

− = − = −
−

2
3

4

4000

3
8

16

1000
1

1 3

3π
π

i
/

( ) .66cm /min2

Since 
dS

dt
< 0,  the rate of decrease is positive. The surface

area is decreasing at the rate of 1.6 cm /min.2
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28. Step 1:
x = x-coordinate of particle
y = y-coordinate of particle
D = distance from origin to particle

      Step 2:
At the instant in question, x = 5 m, y = 12 m,

dx

dt
= −1  m/sec, and 

dy

dt
= −5 m/sec.

      Step 3:

We want to find 
dD

dt
.

      Step 4:

D x y= +2 2

     Step 5:

dD

dt x y
x

dx

dt
y

dy

dt

x
dx

dt
y

dy

dt=
+

+⎛
⎝⎜

⎞
⎠⎟

=
+1

2
2 2

2 2 xx y2 2+

      Step 6:

dD

dt
=

− + −

+
= −

( )( ) ( )( )5 1 12 5

5 12
5

2 2
m/sec

The particle’s distance from the origin is changing at the
rate of –5 m/sec.

29. Step 1:

Street
light

Shadow

16 ft

6 ft

x s

x = distance from streetlight base to man
s = length of shadow

      Step 2:

At the instant in question, 
dx

dt
x= − =5 10ft/secand ft.

Step 3:

We want to find 
ds

dt
.

Step 4:

By similar triangles, 
s s x

6 16
= +

.  This is equivalent to

16 6 6
3

5
s s x s x= + =, .or

       Step 5:

ds

dt

dx

dt
= 3

5

      Step 6:

ds

dt
= − = −3

5
5 3( ) ft/sec

The shadow length is changing at the rate of –3 ft/sec.

30. Step 1:
s = distance ball has fallen
x = distance from bottom of pole to shadow

      Step 2:

At the instant in question, s =
⎛

⎝⎜
⎞

⎠⎟
=16

1

2
4

2

ft and

ds

dt
=

⎛

⎝⎜
⎞

⎠⎟
=32

1

2
16ft/sec.

     Step 3:

We want to find 
dx

dt
.

     Step 4:

By similar triangles, 
x

s

x−
−

=30

50 50
.  This is equivalent to

50 1500 50 1500x x sx sx− = − =, .or We will use

x s= −1500 1.

      Step 5 :

dx

dt
s

ds

dt
= − −500 2

       Step 6:

dx

dt
= − = −−1500 4 16 15002( ) ( ) ft/sec

The shadow is moving at a velocity of –1500 ft/sec.

31. Step 1:
x = position of car (x = 0 when car is right in front of you)
θ = camera angle. (We assumeθ is negative until the car
      passess in front of you, and then positive.)

      Step 2:

At the first instant in question, x = 0 ft and 
dx

dt
= 264  ft/sec.

A half second later, x
1

2
264 132( ) =  ft and 

dx

dt
= 264  ft/sec.

Step 3:

We want to find 
d

dt

θ
 at each of the two instants.

      Step 4:

θ =
⎛
⎝⎜

⎞
⎠⎟

−tan 1

132

x

      Step 5:
d

dt x

dx

dt

θ =

+ ⎛
⎝⎜

⎞
⎠⎟

1

1
132

1

1322
i
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31. Continued

Step 6:

When x
d

dt
= =

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=0
1

1
0

132

1

132
264 2

2
: ( )

θ
radians/sec

When x
d

dt
= =

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=132
1

1
132

132

1

132
264

2
: ( )

θ
11 radians/sec

32. Step 1:
p = x-coordinate of plane’s position
x = x-coordinate of car’s position
s = distance from plane to car (line-of-sight)

      Step 2:
At the instant in question,

p
dp

dt
s

ds

dt
= = = = −0 120 5 160, ,mph, mi and mph.

      Step 3:

We want to find − dx

dt
.

Step 4:

( )x p s− + =2 2 23

     Step 5:

2 2( )x p
dx

dt

dp

dt
s

ds

dt
− −⎛

⎝⎜
⎞
⎠⎟

=

Step 6:
Note that, at the instant in question,

x = − =5 3 42 2 mi.

2 4 0 120 2 5 160

8 120

( ) ( )( )− −⎛
⎝⎜

⎞
⎠⎟

= −

−⎛
⎝⎜

dx

dt
dx

dt

⎞⎞
⎠⎟

= −

− = −

= −

1600

120 200

80

dx

dt
dx

dt
mph

The car’s speed is 80 mph.

33. Step 1:
  s = shadow length
θ = sun’s angle of elevation

      Step 2:
At the instant in question,

s
d

dt
= = ° =60 0 27 0 0015ft and radian/m

θ π. / min . iin.

Step 3:

We want to find − ds

dt
.

Step 4:

tan cotθ θ= =80
80

s
sor

      Step 5:

ds

dt

d

dt
= −80 2csc θ θ

      Step 6:
Note that, at the moment in question, since tan

θ = <80

60 2
and 0 < θ π

,  we have sinθ = 4

5
and so

cscθ = 5

4
.

ds

dt
= −

⎛

⎝⎜
⎞

⎠⎟

= −

80
5

4
0 0015

0 1875
12

2

( . )

.

π

π ft

min
i

iin

1 ft
in./min

in./min
= −
≈ −

2 25
7 1

.

.
π

Since 
ds

dt
< 0,  the rate at which the shadow length is

decreasing is positive. The shadow length is decreasing at
the rate of approximately 7.1 in./min.

34. Step 1:
a A
b

=
=

distance from origin to
distance fromm origin to
angle shown in problem sta

B
θ = ttement

      Step 2:

At the instant in question, 
da

dt

db

dt
= − =2 1m m/sec,/ sec,

a b= =10 20m, and m.

Step 3:

We want to find 
d

dt

θ
.

Step 4:

tan tanθ θ= =
⎛

⎝⎜
⎞

⎠⎟
−a

b

a

b
or 1

Step 5:

d

dt a

b

b
da

dt
a

db

dt

b

b
da

dt
a

db

dt

a

θ =

+
⎛

⎝⎜
⎞

⎠⎟

−
=

−
1

1

2 2 22 2+ b

Step 6:

d

dt

θ = − −

+
= −( )( ) ( )( )

. / sec
20 2 10 1

10 20
0 1

2 2
radian

≈≈ −5 73. degrees/sec

To the nearest degree, the angle is changing at the rate of
–6 degrees per second.
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35. Step 1:

120°

A

BbO

c
a

a O A
b O

=
=

distance from to
distance from to BB

c A B= distance from to

      Step 2:
At the instant in question, a = 5  nautical miles, b = 3

nautical miles, 
da

dt

db

dt
= =14 21knots, and knots.

      Step 3:

We want to find 
dc

dt
,

Step 4:

Law of Cosines :    c a b ab2 2 2 2 120= + − °cos

                               c a b ab2 2 2= + +
Step 5:

2 2 2c
dc

dt
a

da

dt
b

db

dt
a

db

dt
b

da

dt
= + + +

      Step 6:
Note that, at the instant in question,

c a b ab= + + = + + = =2 2 2 25 3 5 3 49 7( ) ( ) ( )( )

2 7 2 5 14 2 3 21 5 21 3 14

1

( ) ( )( ) ( )( ) ( )( ) ( )( )
dc

dt
= + + +

44 413

29 5

dc

dt
dc

dt

=

= . knots

The ships are moving apart at a rate of 29.5 knots.

36. True. Since 
dC

dt

dr

dt
= 2π ,  a constant

dr

dt

dC

dt
results in a constant .

37. False. Since 
dA

dt
r

dr

dt

dA

dt
= 2π , the value of depends on rr.

38. A. v s= 3

dv s ds
s

s

=
=
=

3
24 3 2

2

2

2 ( )
in

39. E. sA s= 6 2

dsA sds
sds

ds
s

=
=

=

12
12 12

1

V s

dV s ds s
s

s
s

=

= =

=
=

3

2 23 3
1

24 3
8 in

40. C.
x

y

dx

dt

dy

dt
=

0 6

0 8
3

.

.
= dy

dt

         
dy

dt
= 2 25. , but it is negative because y is decreasing.

         
dy

dt
= −2 25. .

41. B. v r h= π 2

sA rh
dv r dh

dsA hdr
dv dsA

r dh hdr
dh

=
=
=
=
=

2

2

2

2

2

π
π

π

π π

hh

dr

r
dr

dr

=

=

=

2

2

100
2

1

01

2

2( )

.
cm

sec

42. (a)  
dc

dt

d

dt
x x x= − +( )3 26 15

     

= − +

= − +
=

( )

[ ( ) ( ) ]( . )
.

3 12 15

3 2 12 2 15 0 1
0 3

2

2

x x
dx

dt

dr

dt

d

dt
x

dx

dt
dp

dt

dr

dt

dc

dt

= = = =

= −

( ) ( . ) .9 9 9 0 1 0 9

== − =0 9 0 3 0 6. . .

(b) 
dc

dt

d

dt
x x

x
= − +

⎛

⎝⎜
⎞

⎠⎟
3 26

45

= − −⎛
⎝⎜

⎞
⎠⎟

= − −

3 12
45

3 1 5 12 1 5
45

1

2
2

2

x x
x

dx

dt

( . ) ( . )
..

( . )

.
5

0 05

1 5625

2

⎡
⎣⎢

⎤
⎦⎥

= −
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42. Continued

(b)
dr

dt

d

dt
x

dx

dt
dp

dt

dr

dt

= = = =

= −

( ) ( . ) .70 70 70 0 05 3 5

ddc

dt
= − − =3 5 1 5625 5 0625. ( . ) .

43. (a) Note that the level of the coffee in the cone is not
needed until part (b).
Step 1:

V1 = volume of coffee in pot

y = depth of coffee in pot

            Step 2:

dV

dt
1 10= in3 / min

Step 3:

We want to find the value of 
dy

dt
.

Step 4:

V y1 9= π
Step 5:

dV

dt

dy

dt
1 9= π

Step 6:

10 9

10

9
0 354

=

= ≈

π

π

dy

dt
dy

dt
. in./min

The level in the pot is increasing at the rate of
approximately 0.354 in./min.

(b) Step 1:

V
2

 = volume of coffee in filter

r = radius of surface of coffee in filter
h = depth of coffee in filter

      Step 2:

At the instant in question, 
dV

dt
2 10= − in3 / min  and

h = 5 in.

      Step 3:

We want to find − dh

dt
.

Step 4:

Note that 
r

h
= 3

6
,  so r

h=
2

.

Then V r h
h

2
2

31

3 12
= =π π

.

Step 5:

dV

dt

h dh

dt
2

2

4
= π

Step 6:

− =10
5

4

2π ( ) dh

dt

dh

dt
= − 8

5π
in./min

Note that 
dh

dt
< 0, so the rate at which the level is

falling is positive. The level in the come is falling at the

rate of 
8

5
0 509

π
≈ . in./min.

44. Step 1:

Q = rate of CO
2

exhalation (mL/min)

D = difference between CO
2  concentration in blood

pumped to the lungs and CO
2

concentration in blood

returning from the lungs (mL/L)

y = cardiac output

     Step 2:
At the instant in question, Q = 233 mL/min, D = 41 mL/L,

dD

dt
= −2 (mL/L)/min, and 

dQ

dt
= 0 2mL/ min .

Step 3:

We want to find the value of 
dy

dt
.

Step 4:

y
Q

D
=

      Step 5:

dy

dt

D
dQ

dt
Q

dD

dt

D
=

−

2

      Step 6:

dy

dt
= − − = ≈( )( ) ( )( )

( )
.

41 0 233 2

41

466

1681
0 277

2
L/min2

The cardiac output is increasing at the rate of approximately

0.277 L/min 2− .

45. (a) The point being plotted would correspond to a point on
the edge of the wheel as the wheel turns.

(b) One possible answer isθ π= 16 t, where t is in seconds.
(An arbitrary constant may be added to this expression,
and we have assumed counterclockwise motion.)
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45. Continued

(c) In general, assuming counterclockwise motion:
dx

dt

d

dt
dy

dt

= − = − = −2 2 16 32sinθ θ θ π π θ(sin )( ) sin

== = =

=

2 2 16 32

4

cos (cos )( ) cos

:

θ θ θ π π θ

θ π

d

dt

dx

d

At

tt
dy

dt

= − = − ≈ −

=

32
4

16 2 71 086

32

π π π ft/secsin ( ) .

ππ π π ft/seccos ( ) .
4

16 2 71 086= ≈

     

At

ft/sec

θ π

π π π

=

= − = − ≈ −
2

32
2

32 100 531

:

sin .
dx

dt
ddy

dt

dx

dt

= =

=

= −

32
2

0

32

π π

θ π

π π

cos

:

sin

ft/sec

At

==

= = − ≈ −

0

32 32 100 531

ft/sec

ft/sec
dy

dt
π π πcos .

46. (a) One possible answer:
x y= = +30 40 30cos , sinθ θ

(b) Since the ferris wheel makes one revolution every
10 sec, we may let θ π= 0 2. t  and we may write
x t y t= = +30 0 2 40 30 0 2cos . , sin . .π π  (This assumes

that the ferris wheel revolves counterclockwise.)

      In general:
dx

dt
t t

dy

dt

= − = −

=

30 0 2 0 2 6 0 2

30

(sin . )( . ) sin .π π π π

((cos . )( . ) cos .

:

0 2 0 2 6 0 2

5

6

π π π π

π

t t

t
dx

dt

=

=

= −

At

ssin

cos ( ) .

π

π π π

=

= = − ≈ −

0

6 6 1 18 850

ft/sec

ft
dy

dt
//sec

At

ft/sec

t
dx

dt
dy

=

= − ≈

8

6 1 6 17 927

:

sin . .π π

ddt
= ≈6 1 6 5 825π πcos . . ft/sec

47. (a) 
dy

dt

d

dt
uv u

dv

dt
v

du

dt
= = +( )

= +
=
=

u v v u
uv
y

( . ) ( . )
.
.

0 05 0 04
0 09
0 09

Since 
dy

dt
y= 0 09. , the rate of growth of total production

is 9% per year.

(b) 
dy

dt

d

dt
uv u

dv

dt
v

du

dt
= = +( )

  
= + −
=
=

u v v u
uv
y

( . ) ( . )
.
.

0 03 0 02
0 01
0 01

The total production is increasing at the rate of
1% per year.

Quick Quiz Sections 4.4−−−−4.6

  1. B. x x
f x

f xn n+ = −
′1

( )

( )

   f x x x
f x x

( )
( )

= + −
′ = +

3

2
2 1

3 2

        

x

x

2

3

2

3

3

1
1 2 1 1

3 1 2

3

5

3

5

3

5
2

= − + −

+
=

= −

⎛

⎝⎜
⎞

⎠⎟
+

( ) ( )

( )

33

5
1

3
3

5
2

0 465
2

⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟
+

= .

  2. B. z x y2 2 2= +

      z = + =4 3 52 2

2 2 2

5 4 3 3

z
dz

dt
x

dx

dt
y

dy

dt
dy

dt

dy

dt
dy

d

= +

=
⎛

⎝⎜
⎞

⎠⎟
+

tt
dx

dt

dy

dt

=

= =
⎛

⎝⎜
⎞

⎠⎟
=

1

3

3 3
1

3
1

  3. A. x t( ) = 70

     

y t t
z t t
dz

dt
t

( )
( ) (( ) )

(

/
=
= +

= +

60
60 70

1

2
3600

2 2 1 2

2 44900 7200

7200 4

2 3600 4 490

1 2

2

) ( )

( )

( ( )

/−

=
+

t

dz

dt 00

57 6

1 2)

.

/

dz

dt
=

  4. (a)    f x x( ) =
x

f

=

′ = =

= + − =

−

25

25
1

2
25

1

10

26 5
1

10
26 25 5 1

1 2( ) ( )

( ) .
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4. Continued

(b) x x
f x

f x
f x x

n n+ = −
′

= − =
1

2 26 0
( )

( )
, ( )

  x
2

2

5
5 26

2 5
5 1= − − =( )

( )
.

(c)     f x x( ) = 3

x

f

=

′ = =

= + −

=

−

3

27
1

3
27

1

27

26 3
1

27
26 27

26 2

2 3( ) ( )

( )

.9963

Chapter 4 Review (pp. 256–260)

  1. y x x= −2

′ =
−

⎛

⎝
⎜

⎞

⎠
⎟ − + −

= − + −

−

=

y x
x

x

x x

x

1

2 2
1 2 1

2 2

2 2

( ) ( )( )

( )

44 3

2 2

−

−

x

x

The first derivative has a zero at 
4

3
.

Critical point value: x y= = ≈4

3

4 6

9
1 09.

Endpoint values:     x y= − = −2 4

                                x y= =2 0

The global maximum value is 
4 6

9

4

3
at x = , and the global

minimum value is –4 at x = −2.

  2. Since y is a cubic function with a positive leading

coefficient, we have lim lim .
x x

y y
→−∞ →∞

= −∞ = ∞and There are

no global extrema.

  3. ′ = − +−y x e x e xx x( )( )( ) ( )( )/ /2 1 2 3 1 2
2 2

= − +⎛
⎝⎜

⎞
⎠⎟

=
− +

2
1

2 1 1

1 2

1 2

e
x

x

e x x

x

x

x

/

/ ( )( )

Intervals x < −1 −1 < x < 0 0 < x < 1 x > 1

Sign of ′y − + − +

Behavior of y Decreasing Increasing Decreasing Increasing

     

′′ = − +

= + + −

−

−

y
d

dx
e x x

e x x

x

x

[ ( )]

( )( ) (

/

/

2

2 1

1 2 1

1 2 2 −− −

− −
+ −

= + + −

1 1 2 3

1 2 2 4
2 2

2 1 2 2

x e x

e x x

x

x

)( )( )

( )(

/

/ xx

e x x

x
e x

x

x

−

= − +

= − +

2

1 2 4 2

4

1 2 2 2

2 2

2 0 5 1

)

( )

[( . ) .

/

/ 775
4

]

x

      The second derivative is always positive (where defined),
so the function is concave up for all x ≠ 0.
Graphical support:

       

(a) [ , ) , )− ∞1 0 1and [

(b) ( , ]−∞ −1 and (0, 1]

(c) ( , ) ( , )−∞ ∞0 0and

(d) None

(e) Local (and absolute) minima at (1, e) and (−1, e)

(f) None

  4. Note that the domain of the function is [−2, 2].

′ =
−

⎛

⎝
⎜

⎞

⎠
⎟ − + −

= − + −

y x
x

x x

x x

1

2 4
2 4 1

4

4

2

2

2 2

( ) ( )( )

( )

−−

= −

−

x
x

x

2

2

2

4 2

4

Intervals −2 < x < − 2 − < <2 2x 2 2< <x

Sign of ′y − + −

Behavior of y Decreasing Increasing Decreasing

     ′′ =

− − − −
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

y

x x x
x

x( )( ) ( ) ( )4 4 4 2
1

2 4
2

4

2 2

2

−−

= −

−

x
x x

x

2

2

2 3 2

2 6

4

( )

( )

Note that the values x = ± 6  are not zeros of ′′y  because

they fall outside of the domain.

Intervals − < <2 0x 0 2< <x

Sign of ′′y + −

Behavior of y Concave up Concave down
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4. Continued

     Graphical support:

      

(a) [ , ]− 2 2

(b) [ , ] [ , ]− −2 2 2 2and

(c) (−2, 0)

(d) (0, 2)

(e) Local maxima: (−2, 0), ( , )2 2

Local minima: (2, 0), ( , )− −2 2

Note that the extrema at x = ± 2 are also absolute
extrema.

(f) (0, 0)

  5. ′ = − −y x x1 2 4 3

Using grapher techniques, the zero of ′ ≈y xis 0 385. .

Intervals x < 0.385 0.385 < x

Sign of ′y + −

Behavior of y Increasing Decreasing

     ′′ = − − = − +y x x2 12 2 1 62 2( )

The second derivative is always negative so the function is
concave down for all x.

     Graphical support:

       

(a) Approximately ( , . ]−∞ 0 385

(b) Approximately [ . , )0 385 ∞

(c) None

(d) ( , )−∞ ∞

(e) Local (and absolute) maximum at ≈ ( . , . )0 385 1 215

(f) None

  6. ′ = −−y ex 1 1

Intervals x < 1 1< x

Sign of ′y − +

Behavior of y Decreasing Increasing

     ′′ = −y ex 1

The second derivative is always positive, so the function is
concave up for all x.

     Graphical support:

      

(a) [ , )1 ∞

(b) ( , ]−∞ 1

(c) ( , )−∞ ∞

(d) None

(e) Local (and absolute) minimum at (1, 0)

(f) None

  7. Note that the domain is (−1, 1).

y x

y x x
x

x

= −

′ = − − − =
−

−

−

( )

( ) ( )
( )

/

/

1
1

4
1 2

2 1

2 1 4

2 5 4

2 5//4

Intervals − < <1 0x 0 1< <x

Sign of y′ − +

Behavior of y Decreasing Increasing

      

′′ =
− −

⎛

⎝⎜
⎞

⎠⎟
− −

y

x x x2 1 1 2
5

4
12 5 4 2 1 4( ) ( ) ( )( ) ( ) (/ / 22

4 1
1 2 2 5

4 1

2 5 2

2 1 4 2 2

2 5

x

x
x x x

x

)

( )
( ) [ ]

( )

/

/
−

= − − +

− //

/( )

2

2

2 9 4

3 2

4 1
= +

−

x

x

The second derivative is always positive, so the function is
concave up on its domain (−1, 1).

    Graphical support:

(a) [0, 1)

(b) (−1, 0]

(c) (−1, 1)

(d) None

(e) Local minimum at (0, 1)

(f) None
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  8. ′ = − −

−
= +

−
y

x x x

x

x

x

( )( ) ( )( )

( ) ( )

3 2

3 2

3

3 2

1 1 3

1

2 1

1

Intervals x < − −2 1 3/ − < <−2 11 3/ x 1 < x

Sign of y′ + − −

Behavior of y Increasing Decreasing Decreasing

     

′′ = −
− − + −

−
y

x x x x x

x

( ) ( ) ( )( )( )( )

(

3 2 2 3 3 2

3

1 6 2 1 2 1 3

11
1 6 2 1 6

1
6

4

3 2 3 2

3 3

2

)
( )( ) ( )( )

( )
(

= −
− − +

−

=

x x x x

x
x x33

3 3

2

1

+
−

)

( )x

Intervals x < −21 3/ − < <2 01 3/ x 0 1< <x 1 < x

Sign of y″ + − − +

Behavior
of y

Concave
up

Concave
down

Concave
down

Concave
up

       Graphical support:

(a) (−∞, − −2 1 3/ ] ≈ (−∞, −0.794]

(b) [ − −2 1 3/ , 1) ≈ [−0.794, 1) and (1, ∞)

(c) (−∞, − −2 1 3/ ) ≈ (−∞, −1.260) and (1, ∞)

(d) ( − −2 1 3/ , 1) ≈ (−1.260, 1)

(e) Local minimum at

−⎛
⎝⎜

⎞
⎠⎟

≈ −− −2
2

3
2 0 794 0 5291 3 1 3/ /, ( . , . )i

(f) −⎛
⎝⎜

⎞
⎠⎟

≈ −2
1

3
2 1 260 0 4201 3 1 3/ /, ( . , . )i

  9. Note that the domain is [−1, 1].

′ = −
−

y
x

1

1 2

Since y′ is negative on (−1, 1) and y is continuous, y is
decreasing on its domain [−1, 1].

′′ = − −

= − − = −

−

−

y
d

dx
x

x x
x

[ ( ) ]

( ) ( )
(

/

/

1

1

2
1 2

1

2 1 2

2 3 2

−− x2 3 2) /

Intervals − < <1 0x 0 1< <x

Sign of y″ + −

Behavior of y Concave up Concave down

     Graphical support:

    

(a) None

(b) [−1, 1]

(c) (−1, 0)

(d) (0, 1)

(e) Local (and absolute) maximum at (−1, π);
local (and absolute) minimum at (1, 0)

(f) 0
2

,
π⎛

⎝⎜
⎞

⎠⎟

10. This problem can be solved graphically by using NDER to
obtain the graphs shown below.

      y y′ 

y″ 

      An alternative approach using a combination of algebraic
and graphical techniques follows. Note that the
denominator of y is always positive because it is equivalent

to (x + 1 2)  + 2.

′ = + + − +

+ +

= − +

y
x x x x

x x
x

x

( )( ) ( )( )

( )

(

2

2 2

2

2 3 1 2 2

2 3
3

22 22 3+ +x )

Intervals x < − 3 − < <3 3x 3 < x

Sign of y′ − + −

Behavior of y Decreasing Increasing Decreasing

   

′′ = + + − − − + + + +
y

x x x x x x x( ) ( ) ( )( )( )(2 2 2 22 3 2 3 2 2 3 2 22

2 3
2 3 2 2 2 2 3

2 4

2 2

)

( )
( )( ) ( )( )

x x
x x x x x

+ +

= + + − − + − +

(( )

( )

x x
x x

x x

2 3

3

2 3

2 3
2 18 12

2 3

+ +

= − −

+ +
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10. Continued

Using graphing techniques, the zeros of 2 18 123x x− −
(and hence of y″) are at x x≈ − ≈ −2 584 0 706. , . ,

and x ≈ 3 290. .

Intervals (–∞, –2.584)
(−2.584,
−0.706)

(−0.706,
3.290)

(3.290, ∞)

Sign of
y″ − + − +

Behavior
of y

Concave
down

Concave
up

Concave
down

Concave
up

(a) [ , ]− 3 3

(b) ( , ] [ , )−∞ − ∞3 3and

(c) Approximately (−2.584, −0.706) and (3.290, ∞)

(d) Approximately (−∞, −2.584) and (−0.706, 3.290)

(e) Local maximum at 3
3 1

4
,

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≈ ( . , . );1 732 0 183

local minimum at − − −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3
3 1

4
,

≈ − −( . , . )1 732 0 683

(f) ≈(−2.584, −0.573), (−0.706, −0.338), and (3.290, 0.161)

11. For x > 0, ′ = =y
d

dx
x

x
ln

1

For x < 0: ′ = − =
−

− =y
d

dx
x

x x
ln( ) ( )

1
1

1

Thus ′ =y
x

1
 for all x in the domain.

Intervals (−2, 0) (0, 2)

Sign of ′y − +

Behavior of y Decreasing Increasing

      ′′ = − −y x 2

The second derivative always negative, so the function is
concave down on each open interval of its domain.

      Graphical support:

(a) (0, 2]

(b) [−2, 0)

(c) None

(d) (−2, 0) and (0, 2)

(e) Local (and absolute) maxima at (−2, ln 2) and (2, ln 2)

(f) None

12. ′ = −y x x3 3 4 4cos sin

Using graphing techniques, the zeros of ′y in the domain

0 2 0 176 0 994
2

1 57

2 14

≤ ≤ ≈ ≈ = ≈

≈

x x x x

x

π π
are . , . , . ,

. 88 2 965 3 834
3

2
5 591, . , . , , .and x x x x≈ ≈ = ≈π

Intervals   0 < x< 0.176 0.176 < x < 0.994  0.994 < x < 
π
2

π
2

< x < 2.148 2.148 < x < 2.965

Sign of y′           + − + − +

Behavior

of y
  Increasing Decreasing Increasing Decreasing Increasing

Intervals 2.965 < x < 3.834 3.834 < x <
3

2

π 3

2

π
< x < 5.591 5.591 < x 2π

Sign of y′ − + − +

Behavior

   of y
Decreasing Increasing Decreasing Increasing

′′ = − −y x x9 3 16 4sin cos

Using graphing techniques, the zeros of ′′y in the domain

0 2 0 542 1 266 1 876
2 600

≤ ≤ ≈ ≈ ≈
≈

x x x x
x

π are . , . , . ,
. , xx x x x≈ ≈ ≈ ≈3 425 4 281 5 144 6 000. , . , . . .and

Intervals 0 < x < 0.542 0.542 <  x < 1.266 1.266 < x < 1.876 1.876 < x < 2.600 2.600 < x < 3.425

Sign of y″ − + − + −

Behavior

of y

Concave

down

Concave

up

Concave

down

Concave

up

Concave

down

Intervals 3.425 < x < 4.281 4.281 < x < 5.144 5.144 < x < 6.000 6.00 < x < 2π

Sign of y″ + − + −

Behavior

of y

Concave

up

Concave

down

Concave

up

Concave

down

     Graphical support:
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12. Continued

(a) Approximately [0, 0.176],

0 994
2

2 148 2 965 3 834
3

2
. , , [ . , . ], . ,

π π⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥⎥ ⎡⎣ ⎤⎦, . ,and 5 591 2π

(b) Approximately [0.176, 0.994],

π π
2

2 148 2 965 3 834
3

2
5 591, . , [ . , . ], , .

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
and ⎢⎢

⎤

⎦
⎥

(c) Approximately (0.542, 1.266), (1.876, 2.600),
(3,425, 4.281), and (5.144, 6.000)

(d) Approximately (0, 0.542), (1.266, 1.876),
(2.600, 3.425), (4.281, 5.144), and ( , )6000 2π

(e) Local maxima at ≈
⎛

⎝⎜
⎞

⎠⎟
( . , . ), ,0 176 1 266

2
0

π

and (2.965, 1.266), 
3

2
2

π
, ,

⎛

⎝⎜
⎞

⎠⎟
 and ( , );2 1π

local minima at ≈ −( , ), ( . , . ),0 1 0 994 0 513

(2.148, −0.513), (3.834, −1.806), and (5.591, −1.806)

Note that the local extrema at x x≈ =3 834
3

2
. , ,

π

and x ≈ 5 591. are also extrema.

(f) ≈ (0.542, 0.437), (1.266, −0.267), (1.876, −0.267),
(2.600, 0.437), (3.425, −0.329), (4.281, 0.120),
(5.144, 0.120), and (6.000, −0.329)

13. ′ = − <
− >

⎧
⎨
⎪

⎩⎪

−
y e x

x x

x ,
,

0
4 3 02

Intervals
x < 0 0

2

3
< <x

2

3
< x

Sign of
y

− + −

Behavior
of y Decreasing Increasing Decreasing

      ′′ = >
− <

⎧
⎨
⎪

⎩⎪

−
y e x

x x

x ,
,

0
6 0

Intervals x < 0 0 < x

Sign of ′′y + −

Behavior of y Concave up Concave down

Graphical support:

(a) 0
2

3
,

⎤

⎦
⎥
⎥

⎛

⎝
⎜

(b) ( , ]−∞ 0 and
2

3
, ∞)⎡

⎣
⎢
⎢

(c) ( , )−∞ 0

(d) ( , )0 ∞

(e) Local maximum at
2

3

16

3 3
1 155 3 079, ( . , . )

⎛

⎝
⎜

⎞

⎠
⎟ ≈

(f) None. Note that there is no point of inflection
at x = 0 because the derivative is undefined and no
tangent line exists at this point.

14. ′ = − + + +y x x x5 7 10 44 2

Using graphing techniques, the zeros
of ′y are x ≈ −0 578. and x ≈ −1 692. .

Intervals x < −0 578.
− <
<

0 578
1 692
.
.

x
1 692. < x

Sign of ′y − + −

Behavior
of y Decreasing Increasing Decreasing

     ′′ = − + +y x x20 14 103

Using graphing techniques, the zeros of ′′y is x ≈ 1 079. .

Intervals x < 1 079. 1 079. < x

Sign of ′′y + −

Behavior of y Concave up Concave down

      Graphical support:

(a) Approximately [ . , . ]− 0 578 1 692

(b) Approximately ( , . ]−∞ − 0 578 and [ . , )1 692 ∞
(c) Approximately ( , . )−∞ 1 079

(d) Approximately ( . , )1 079 ∞
(e) Local maximum at ≈ ( . , . );1 692 20 517 local minimum

at ≈ −( . , . )0 578 0 972

(f) ≈ ( . , . )1 079 13 601
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15. y x x= −2 4 5 9 5

′ = − = −−y x x
x

x

8

5

9

5

8 9

5
1 5 4 5

5
/ /

Intervals x < 0 0
8

9
< <x

8

9
< x

Sign of ′y − + −

Behavior
of y Decreasing Increasing Decreasing

     ′′ = − − = +− −y x x
x

x

8

25

36

25

4 2 9

25
6 5 1 5

6 5
/ /

/

( )

Intervals x < − 2

9
− < <2

9
0x 0 < x

Sign of ′′y + − −

Behavior
of y

Concave
up

Concave
down

Concave
down

      Graphical support:

(a) 0
8

9
,

⎡

⎣
⎢

⎤

⎦
⎥

(b) ( , ]−∞ 0 and
8

9
, ∞)⎡

⎣
⎢

(c) −∞ −
⎛

⎝⎜
⎞

⎠⎟
,

2

9

(d) −
⎛

⎝⎜
⎞

⎠⎟
2

9
0, and ( , )0 ∞

(e) Local maximum

at
8

9

10

9

8

9
0 889 1 011

4 5

, ( . , . );
/

i
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≈ local minimum

at (0, 0)

(f) − −⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≈ −⎛
⎝⎜

⎞
⎠

2

9

20

9

2

9

2

9
0 667

4 5

, , .
/

i ⎟⎟

16. We use a combination of analytic and grapher techniques to
solve this problem. Depending on the viewing windows
chosen, graphs obtained using NDER may exhibit
strange behavior near x = 2 because, for example,
NDER (y , 2) ≈ 5,000,000 while y′ is actually undefined at

x = 2. The graph of y
x x x

x
= − + −

−
5 4 4

2

2 3

 is shown below.

′ =
− − + − − − + −

−

=

y
x x x x x x

x

( )( ) ( )( )

( )

2 4 8 3 5 4 4 1

2

2 2 3

2

−− + − +
−

2 10 16 3

2

3 2

2

x x x

x( )
The graph of y′ is shown below.

The zero of y′ is x ≈ 0.215.

Intervals x < 0.215 0.215 < x < 2 2 < x

Sign of y′  + − −

Behavior
of y

Increasing Decreasing Decreasing

      

′′ =

− − + − − − + − +

y

x x x x x x( ) ( ) ( )2 6 20 16 2 10 16 32 2 3 2

( )( )

(

2 2x

x

−

− 22
2 6 20 16 2 2 10 16 3

4

2 3 2
)

( )( ) ( )

(
= − − + − − − + − +x x x x x x

xx
x x x

x

−

= − − + −

−

2
2 6 12 13

2

3

3 2

3

)
( )

( )

      The graph of y″ is shown below.

The zero of x x x3 26 12 13− + −  (and hence of y″) is

x ≈ 3.710.

Intervals x < 2 2 < x < 3.710 3.710 < x

Sign of y″ − + −

Behavior of y Concave down Concave up
Concave

down
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16. Continued

(a) Approximately (−∞, 0.215]

(b) Approximately [0.215, 2) and (2, ∞)

(c) Approximately (2, 3.710)

(d) (−∞, 2) and approximately (3.710, ∞)

(e) Local maximum at ≈ (0.215, −2.417)

(f) ≈ (3.710, −3.420)

17. ′ = + −y x x6 1 2 2( )( )

Intervals x < −1 −1 < x < 2 2 < x

Sign of y′ − + +

Behavior
of y

Decreasing Increasing Increasing

      
′′ = + − + −

= − +
y x x x

x x
6 1 2 2 6 2 1
6 2 2 2

2( )( )( ) ( ) ( )
( )[( ) ++ −

= −
( )]

( )
x

x x
2

18 2

Intervals x < 0 0 < x < 2 2 < x

Sign of y″ + − +

Behavior
of y

Concave
up

Concave
down

Concave
up

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x = −1.

(c) There are points of inflection at x = 0 and at x = 2.

18. ′ = + −y x x6 1 2( )( )

Intervals x < −1 −1 < x < 2 2 < x

Sign of y′ + − +

Behavior
of y

Increasing Decreasing Increasing

     ′′ = − − = −y
d

dx
x x x6 2 6 2 12( ) ( )

Intervals x < 1

2

1

2
< x

Sign of y″ − +

Behavior of y Concave down Concave up

(a) There is a local maximum at x = −1.
(b) There is a local maximum at x = 2.

(c) There is a point of inflection at x = 1

2
.

19. Since 
d

dx
x e x ex x− −

⎛

⎝⎜
⎞

⎠⎟
= +− − − −1

4
4 5 ,

f x x e Cx( ) .= − − +− −1

4
4

20. Since 
d

dx
x x x f x x Csec sec tan , ( ) sec .= = +

21. Since 
d

dx
x x x

x
x2

1

3

2
13 2ln ,+ +

⎛

⎝⎜
⎞

⎠⎟
= + +

f x x x x C( ) ln .= + + +2
1

3
3

22. Since 
d

dx
x x x

x

2

3
2

13 2 1 2/ / ,+
⎛

⎝⎜
⎞

⎠⎟
= +

f x x x C( ) ./ /= + +2

3
23 2 1 2

23. f x x x C( ) cos sin= − + +
f

C
C

f x x x

( )

( ) cos sin

π =
+ + =

=
= − + +

3
1 0 3

2
2

24. f x x x x x C

f

C

( )

( )

/= + + + +

=

+ + + +

3

4

1

3

1

2
1 0

3

4

1

3

1

2
1

4 3 3 2

==

= −

= + + + −

0

31

12
3

4

1

3

1

2

31

12
4 3 3 2

C

f x x x x x( ) /

25. v t s t t

s t t t C
s

C

( ) ( ) .

( ) .
( )

= ′ = +
= + +
=
=

9 8 5

4 9 5
0 10

10

2

ss t t t( ) .= + +4 9 5 102

26. a t v t
v t t C
v

C
v t s

( ) ( )
( )
( )

( )

= ′ =
= +
=
=
= ′

32
32

0 20
20

1

1
(( )

( )
( )

( )

t t

s t t t C
s
C

s t

= +
= + +
=
=
=

32 20

16 20
0 5

5

1

2
2

2

66 20 52t t+ +
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27. f x x

f x x

( ) tan

( ) sec

=
′ = 2

L x f f x( ) = −
⎛

⎝⎜
⎞

⎠⎟
+ ′ −

⎛

⎝⎜
⎞

⎠⎟
− −

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤π π π
4 4 4 ⎦⎦

⎥
⎥

= −
⎛

⎝⎜
⎞

⎠⎟
+ −

⎛

⎝⎜
⎞

⎠⎟
+

⎛

⎝⎜
⎞

⎠⎟

= −

tan sec
π π π
4 4 4

2 x

11 2
4

2
2

1

+ +
⎛

⎝⎜
⎞

⎠⎟

= + −

x

x

π

π

28. f x x( ) sec=
′ =f x x x( ) sec tan

L x f f x( )

sec

=
⎛

⎝⎜
⎞

⎠⎟
+ ′

⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟

=
⎛

⎝

π π π

π
4 4 4

4
⎜⎜

⎞

⎠⎟
+

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
−

⎛

⎝⎜
⎞

⎠⎟

= +

sec tan

(

π π π
4 4 4

2 2

x

11
4

2
2

4
2

) x

x

−
⎛

⎝⎜
⎞

⎠⎟

= − +

π

π

29. f x
x

( )
tan

=
+

1

1

′ = − +

= −
+

= −

−f x x x

x x

( ) ( tan ) (sec )

cos ( tan )

1
1

1

2 2

2 2

11

0 0 0
1 1 0

2(cos sin )
( ) ( ) ( )( )

( )

x x
L x f f x

x

+
= + ′ −
= − −
== − +x 1

30. f x e x

f x e x
L x f f x

x

x

( ) sin

( ) cos
( ) ( ) ( )(

= +
′ = +

= + ′ −0 0 00
1 2 0
2 1

)
( )= + −

= +
x

x

31. The global minimum value of
1

2
occurs at x = 2.

32. (a) The values of ′y and ′′y are both negative where the
graph is decreasing and concave down, at T.

(b) The value of ′y is negative and the value of ′′y is
positive where the graph is decreasing and concave up,
at P.

33. (a) The function is increasing on the interval 0 2, .⎤⎦(
(b) The function is decreasing on the interval −⎡⎣ )3 0, .

(c) The local extreme values occur only at the endpoints of
the domain. A local maximum value of 1 occurs at
x = −13, and a local maximum value of 3 occurs at

x = 2.

34. The 24th day

35. y

x

2

3–3

–3

y = f(x)

36. (a) We know that f is decreasing on [0, 1] and increasing on
[1, 3], the absolute minimum value occurs at x = 1 and
the absolute maximum value occurs at an endpoint.
Since f (0) = 0, f (1) = −2, and f (3) = 3, the absolute
minimum value is −2 at x = 1 and the absolute
maximum value is 3 at x = 3.

(b)  The concavity of the graph does not change. There are
no points of inflection.

(c)

37. (a) f x( ) is continuous on [0. 5, 3] and differentiable

on (0. 5, 3).

(b) ′ = ⎛
⎝⎜

⎞
⎠⎟

+ = +f x x
x

x x( ) ( ) (ln )( ) ln
1

1 1

Using a = 0 5. and b = 3, we solve as follows.

′ = −
−

+ = −

f c
f f

c

( )
( ) ( . )

.

ln
ln . ln .

.

3 0 5

3 0 5

1
3 3 0 5 0 5

2 55

3

0 5

2 5
1

0 4 27 2 1

3

0 5

ln

ln
.

.
ln . ln( )

.

c

c

=

⎛

⎝
⎜

⎞

⎠
⎟

−

= −
cc e

c e

=
= ≈

−

−

1 0 4

1 5

27 2

1458 1 579

( )

.

.

(c) The slope of the line is

m
f b f a

b a
= −

−
=( ) ( )

. ln( ) . ln ,0 4 27 2 0 2 1458 and the line

passes through (3, 3 ln 3). Its equation is
y x= − +0 2 1458 3 3 3. ( ln )( ) ln , or approximately

y x= −1 457 1 075. . .
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37. Continued

(d) The slope of the line is m = 0 2 1458. ln , and the line

passes through

( , ( )) ( , ( . ln ))c f c e e= − +− −1 5 1 51458 1458 1 0 2 1458
≈≈ ( . , . ).1 579 0 722

Its equation is
y x c f c

y x e

= − +
= − −

0 2 1458

0 2 1458 141

. (ln )( ) ( ),

. ln ( 5585 )
|

         + − +−e 1 5 1458 1 0 2 1458( . ln ),

y x e= − −0 2 1458 14581 5. (ln ) ,

or approximately y x= −1 457 1 579. . .

38. (a) v t s t t t( ) ( )= ′ = − −4 6 3 2

(b) a t v t t( ) ( )= ′ = − −6 6

(c) The particle starts at position 3 moving in the positive
direction, but decelerating. At approximately
t = 0.528, it reaches position 4.128 and changes
direction, beginning to move in the negative direction.
After that, it continues to accelerate while moving in the
negative direction.

39. (a) L x f f x( ) ( ) ( )( )= + ′ −0 0 0

= − + − = −1 0 0 1( )x

(b) f L( . ) ( . )0 1 0 1 1≈ = −

(c) Greater than the approximation in (b), since f ′(x) is
actually positive over the interval (0, 0.1) and the
estimate is based on the derivative being 0.

40. (a) Since
dy

dx
x e e x x x ex x x= − + + −− − −( )( ) ( )( ) ( ) ,2 22 2

dy x x e dxx= − −( ) .2 2

(b) dy e= − −[ ( ) ( ) ]( )( . )2 1 1 0 012 1

   =
≈

−0 01
0 00368

1.
.

e

41. (a) With some rounding, y
e t

=
+ −

1633001 59

1 17 471 0 06378

.

. .

(b)

[0, 80] by [0, 1600000]

(c) y
e

=
+

+ =
−

1633001 59

1 17 471
829 210 2

0 06378 80

.

.
,

. ( )
,, ,305 337

(d) Using the Second Derivative, we find the maximum rate
of growth about 1885. We find a point of inflection
here, which shows the begining of a decline in the rate
of growth.

(e) y
e

=
+

≈
− ∞

1633001 59

1 17 471
2 462 000

0 06378

.

.
, , ,

. ( )
which is the

approxiate maximum population.

(f) There are many possible causes. Advances in
transportation began drawing the population southward
after 1920, and Tennessee was well-situated
grographically to become a crossroads of river, railroad,
and automobile routes. By the year 2000 there had been
numerous other demographic changes. It should be
pointed out that the census years in the data
(1850−1910) include the years of the Civil War and
Reconstruction, so the regression is based on unusual
data.

42. f x x x( ) cos= − +2 1

′ = − −
+

= −
′

= −

+

f x x
x

x x
f x

f x

x

n n
n

n

n

( ) sin

( )

( )

c

2
1

2 1

2

1

oos

sin

x x

x
x

n n

n

n

− +

− −
+

1

2
1

2 1

The graph of y = f (x) shows that f (x) = 0 has one solution,
near x = 1.

x
x
x
x
x

1

2

3

4

5

1
0 8361848
0 8283814
0 8283608

=
≈
≈
≈
≈

.

.

.
00 8283608.

Solution: x ≈ 0 828361.
43. Let t represent time in seconds, where the rocket lifts off

at t = 0. Since a t v t( ) ( ) ,= ′ = 20  m/sec2 and
v( ) / sec,0 0= m we have v t t( ) ,= 20 and so
v( )60 1200=  m/sec. The speed after 1 minute (60 seconds)
will be 1200 m/sec.
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44. Let t represent time in seconds, where the rock is blasted
upward at t = 0. Since a t v t( ) ( ) .= ′ = −3 72 m/sec 2 and
v( )0 93=  m/sec, we have v t t( ) . .= − +3 72 93  Since
′ = − +s t t( ) .3 72 93 and s( ) ,0 0= we have

s t t t( ) . .= − +1 86 932 Solving v t( ) ,= 0 we find that the rock
attains its maximum height at t = 25 sec and its height at
that time is s( ) .25 1162 5=  m.

45. Note that s r= −100 2  and the sector area is given by

A r
s

r
rs r r r r=

⎛

⎝⎜
⎞

⎠⎟
= = − = −π

π
2 2

2

1

2

1

2
100 2 50( ) .  To find

the domain of A r r r( ) ,= −50 2  note that r > 0  and

0 2< <s rπ , which gives 12 1
50

1
50. .≈

+
< <

π
r  Since

′( ) = −A r r50 2 ,  the critical point occurs at r = 25. This

value is in the domain and corresponds to the maximum
area because ′′ = −A r( ) ,2  which is negative for all r. The

greatest area is attained when r = 25 ft and s = 50 ft.

46.

x

y

27

4–4

(x, 27 � x2)

For 0 27< <x , the triangle with vertices at (0, 0) and

( , )± −x x27 2  has an area given by

A x x x x x( ) ( )( ) .= − = −1

2
2 27 272 3 Since

′ = − = − +A x x x27 3 3 3 32 ( )( ) and ′′ = −A x6 , the critical

point in the interval ( , )0 27 occurs at x = 3 and

corresponds to the maximum area because ′′A x( ) is

negative in this interval. The largest possible area
is A( )3 54= square units.

47. If the dimensions are x ft by x ft by h ft, then the total

amount of steel used is x xh2 4+ ft2.  Therefore,

x xh h
x

x
2

2

4 108
108

4
+ = = −

and so . The volume is given

by V x x h
x x

x x( ) . .= = − = −2
3

3108

4
27 0 25 Then

′ = − = + −V x x x x( ) . . ( )( )27 0 75 0 75 6 62  and

′′ = −V x x( ) . .1 5  The critical point occurs at x = 6, and it

corresponds to the maximum volume because ′′ <V x( ) 0

for x > 0. The corresponding height is 
108 6

4 6
3

2− =
( )

ft. The

base measures 6 ft by 6 ft, and the height is 3 ft.

48. If the dimensions are x ft by x ft by h ft, then we have

x h2 32=  and so h = 
32

2x
.  Neglecting the quarter-inch

thickness of the steel, the area of the steel used is

A x x xh x
x

( ) .= + = +2 24
128

 We can minimize the weight

of the vat by minimizing this quantity. Now

′ = − = −−A x x x
x

x( ) ( )2 128
2

42

2

3 3  and

′′ = + −A x x( ) .2 256 3  The critical point occurs at x = 4 and

corresponds to the minimum possible area because

′′ >A x( ) 0 for x > 0. The corresponding height is
32

4
2

2
= ft.

The base should measure 4 ft by 4 ft, and the height should
be 2 ft.

49. We have r
h2

2

2
3+

⎛

⎝⎜
⎞

⎠⎟
= , so r

h2
2

3
4

= − . We wish to

minimize the cylinder’s volume

V r h
h

h h
h= = −

⎛

⎝
⎜

⎞

⎠
⎟ = −π π π π2

2 3

3
4

3
4

 for 0 < h < 2 3.

Since 
dV

dh

h
h h= − + −3

3

4

3

4
2 2

2

π π π
( )( ) and

d V

dh

h2

2

3

2
= − π

,  the critical point occurs at h = 2  and it

corresponds to the maximum value because 
d V

dh

2

2
0<  for

h > 0. The corresponding value of r is 3
2

4
2

2

− = .  The

largest possible cylinder has height 2 and radius 2.

50. Note that, from similar cones, 
r h

6

12

12
= −

,  so h = 12−2r.

The volume of the smaller cone is given by

V r h r r r r= = − = −1

3

1

3
12 2 4

2

3
2 2 2 3π π π π

( )  for 0 < r < 6.

Then 
dV

dr
r r r r= − = −8 2 2 42π π π ( ),  so the critical point

occurs at r = 4. This critical point corresponds to the

maximum volume because 
dV

dr
> 0  for 0 4< <r  and

dV
dr

< 0  for 4 6< <r .  The smaller cone has the largest

possible value when r = 4 ft and h = 4 ft.
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51.

Lid

Base

15 in.

10 in.

x

x

x x

(a) V x x x x( ) ( )( )= − −15 2 5

(b, c) Domain: 0 < x < 5

      

The maximum volume is approximately 66.019 
and it occurs when x ≈ 1 962. in.

(d) Note that V x x x x( ) ,= − +2 25 753 2

so ′ = − +V x x x( ) .6 50 752

Solving ′ =V x( ) ,0  we have

x =
± − −

= ±

= ± =

50 50 4 6 75

2 6

50 700

12

50 10 7

12

2( ) ( )( )

( )

225 5 7

6

±
.

These solutions are approximately x ≈1 962. and x = 6 371. ,

so the critical point in the appropriate domain occurs at

x = −25 5 7

6
.

52.

x

y

10

(x, 8 cos 0.3x)

2p–2p p–p

For 0
5

3
< <x

π
, the area of the rectangle is given by

A x x x x x( ) ( )( cos . ) cos . .= =2 8 0 3 16 0 3

Then ′ = − +A x x x x( ) ( . sin . ) (cos . )( )16 0 3 0 3 16 0 3 1

                  = −16 0 3 0 3 0 3(cos . . sin . )x x x

Solving ′ =A x( ) 0  graphically, we find that the critical

point occurs at x ≈ 2 868.  and the corresponding area is
approximately 29.925 square units.

53. The cost (in thousands of dollars) is given by

C x x y x x( ) ( ) .= + − = + − −40 30 20 40 600 30 1442

Then ′ = −
−

= −
−

C x
x

x
x

x
( ) ( )

.
40

30

2 144
2 40

30

1442 2

Solving ′ =C x( ) ,0  we have:

30

144
40

3 4 144
9 16 2304

2304 7

2

2

2 2

2

x

x
x x

x x
x

−
=

= −
= −
=

       Choose the positive solution:

x = + ≈48

7
18 142.  mi

y x= − = ≈2 212
36

7
13 607. mi

54. The length of the track is given by 2 2x r+ π ,  so we have

2 2 400x r+ =π  and therefore x = 200 −πr.  Then the area
of the rectangle is
A r rx

r r

r r r

( )
( )

,

=
= −

= − <

2
2 200

400 2
202

π

π for 0 <
00

π
.

Therefore, ′ = −A r r( ) 400 4π and ′′ = −A r( ) ,4π so the

critical point occurs at r = 100

π
m  and this point

corresponds to the maximum rectangle area because
′′ <A r r( ) .0 for all

The corresponding value of x is

x = −
⎛

⎝⎜
⎞

⎠⎟
=200

100
100π

π
m.

The rectangle will have the largest possible area when

x r= =100
100

m and m.
π

55. Assume the profit is k dollars per hundred grade B tires and
2k dollars per hundred grade A tires.

Then the profit is given by

P x kx k
x

x

k
x x x

x

( )

( ) ( )

= + −
−

= − + −
−

=

2
40 10

5

2
20 5 5

5

2

i

i

kk
x

x
i

20

5

2−
−

′ =
− − − − −

−

=

P x k
x x x

x

k
x

( )
( )( ) ( )( )

( )
2

5 2 20 1

5

2

2

2

2

i

i
−− +

−
10 20

5 2

x

x( )
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55. Continued

The solutions of ′( ) =P x 0  are

x =
± − −

= ±
10 10 4 1 20

2 1
5 5

2( ) ( )( )

( )
, so the solution in the

appropriate domain is x = − ≈5 5 2 76. .
Check the profit for the critical point and endpoints:
Critical point:   x P x k≈ ≈2 76 11 06. ( ) .

End points: x P x k= =0 8( )

x P x k= =4 8( )

The highest profit is obtained when x ≈ 2.76 and y ≈ 5.53,
which corresponds to 276 grade A tires and 553 grade B
tires.

56. (a) The distance between the particles is | f ( t)| where

f t t t( ) cos cos .= − + +
⎛

⎝⎜
⎞

⎠⎟
π
4

Then

′ = − +
⎛

⎝⎜
⎞

⎠⎟
f t t t( ) sin sin

π
4

Solving f ′(t) = 0 graphically, we obtain t ≈ 1.178,
t ≈ 4.230, and so on.

Alternatively,  f ′(t) = 0 may be solved analytically as
follows.

′ = +⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥ − +⎛

⎝⎜
⎞
⎠⎟

+f t t t( ) sin sin
π π π
8 8 8

ππ

π π π

8

8 8 8

⎡

⎣
⎢

⎤

⎦
⎥

= +⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

sin cos cos st t iin

sin cos cos

π

π π π

8

8 8 8

⎡

⎣
⎢

⎤

⎦
⎥

− +⎛
⎝⎜

⎞
⎠⎟

+ +⎛
⎝⎜

⎞
t t

⎠⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

= − +⎛
⎝⎜

⎞
⎠⎟

sin

sin cos ,

π

π π
8

2
8 8

t

so the critical points occcur when

cos , .t t k+
⎛

⎝⎜
⎞

⎠⎟
= = +π π π

8
0

3

8
or At each of these values,

f t( ) cos .= ± ≈ ±2
3

8
0 765

π
 units, so the maximum

distance between the particles is 0.765 units.

(b) Solving cos cost t= +
⎛

⎝⎜
⎞

⎠⎟
π
4

graphically, we obtain

t ≈ 2.749, t ≈ 5.890, and so on.

      Alternatively, this problem may be solved analytically
as follows.

         

cos cos

cos co

t t

t

= +⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥ =

π

π π
4

8 8
ss

cos cos sin

t

t

+⎛
⎝⎜

⎞
⎠⎟

+
⎡

⎣
⎢

⎤

⎦
⎥

+⎛
⎝⎜

⎞
⎠⎟

+

π π

π π
8 8

8 8
tt t

t

+⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

− +

π π π π

π
8 8 8 8

sin cos cos

sin
88 8

2
8 8

0

8

⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

=

+⎛
⎝

sin

sin sin

sin

π

π π

π

t

t⎜⎜
⎞
⎠⎟

=

= +

0

7

8
t k

π π

The particles collide when t = ≈7

8
2 749

π
. (plus multiples

of π if they keep going.)

57. The dimensions will be x in. by 10 – 2x in. by 16 – 2x in.,

so V(x) = x(10 – 2x)(16 – 2x) = 4 3x – 52 2x + 160x for
0 < x < 5.

Then V ′ (x) = 12 2x – 104x + 160 = 4(x − 2)(3x − 20), so the
critical point in the correct domain is x = 2.
This critical point corresponds to the maximum possible
volume because V ′ (x) > 0 for 0 < x < 2 and V ′ (x) < 0 for
2 < x < 5. The box of largest volume has a height of 2 in.
and a base measuring 6 in. by 12 in., and its volume is

144 in3 .

Graphical support:
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58. Step 1:
r = radius of circle
A = area of circle

Step 2:

At the instant in question, 
dr

dt
= − 2

π
m/sec and r = 10 m.

Step 3:

We want to find 
dA

dt
.

Step 4:

A = πr 2

Step 5:

dA

dt
r

dr

dt
= 2π

Step 6:

dA

dt
= −

⎛

⎝⎜
⎞

⎠⎟
= −2 10

2
40π

π
( )

The area is changing at the rate of –40 m / .2 sec

59. Step 1:
x = x-coordinate of particle
y = y-coordinate of particle
D = distance from origin to particle

Step 2:
At the instant in question, x = 5 m, y = 12 m,

dx

dt
= −1 m/sec, and 

dy

dt
= −5m/sec.

Step 3:

We want to find 
dD

dt
.

Step 4:

D x y= +2 2

Step 5:

dD

dt x y
x

dx

dt
y

dy

dt

x
dx

dt
y

dy

dt=
+

+
⎛

⎝⎜
⎞

⎠⎟
=

+
1

2
2 2

2 2 xx y2 2+

Step 6:

dD

dt
=

− + −

+
= −

( )( ) ( )( )5 1 12 5

5 12
5

2 2
m/sec

Since 
dD

dt
 is negative, the particle is approaching the

origin at the positive rate of 5 m/sec.

60. Step 1:

x = edge of length of cube
V = volume of cube

Step 2:

At the instant in question,
dV

dt
= 1200 cm /min3 and x = 20 cm.

Step 3:

We want to find 
dx

dt
.

Step 4:

V = x3

Step 5:

dV

dt
x

dx

dt
= 3 2

Step 6:

1200 3 20 2= ( )
dx

dt

dx

dt
= 1 cm/min

The edge length is increasing at the rate of 1 cm/min.

61. Step 1:
x = x-coordinate of point
y = y-coordinate of point
D = distance from origin to point

Step 2:

At the instant in question, x = 3 and 
dD

dt
= 11  units per sec.

Step 3:

We want to find 
dx

dt
.

Step 4:

Since D x y y x2 2 2 3 2= + =and ,  we have

D x x x= + ≥2 3 0for .

Step 5:

dD

dt x x
x x

dx

dt

x x

x x

dx

dt

x

=
+

+

= +
+

=

1

2
2 3

2 3

2 1

3

2 3

2

2

( )

++
+

2

2 1 x

dx

dt



232 Chapter 4 Review

61. Continued

Step 6:

11
3 3 2

2 4
= +( ) dx

dt

dx

dt
= 4  units per sec

62. (a) Since 
h

r
= 10

4
,  we may write h

r
r

h= =5

2

2

5
or .

(b) Step 1:
h = depth of water in tank
r = radius of surface of water
V = volume of water in tank

Step 2:
At the instant in question,

dV

dt
h= − =5 6ft and ft.3 / min

Step 3:

We want to find − dh

dt
.

Step 4:

V r h h= =1

3

4

75
2 3π π

Step 5:

dV

dt
h

dh

dt
= 4

25
2π

Step 6:

− =

= − ≈ −

5
4

25
6

125

144
0 276

2π

π

( )

.

dh

dt
dh

dt
ft/min

Since
dh

dt
is negative, the water level is dropping at the

positive rate of ≈ 0 276. ft/min.

63. Step 1:

r = radius of outer layer of cable on the spool
θ = clockwise angle turned by spool
s = length of cable that has been unwound

Step 2:

At the instant in question, 
ds

dt
= 6  ft/sec and r = 1.2 ft

Step 3:

We want to find 
d

dt

θ
.

Step 4:

s r= θ

Step 5:

Since r is essentially constant, 
ds

dt
r

d

dt
= θ

Step 6:

6 1 2

5

=

=

.
d

dt
d

dt

θ

θ
radians/sec

The spool is turning at the rate of 5 radians per second.

64. a t v t g( ) ( )= ′ = − = −32 ft/sec2

Since v v t s t t( ) ( ) ( ) .0 32 32 32= = ′ = − +ft/sec,

Since s s t t t( ) ( ) .0 17 16 32 172= − = − + −ft,

The shovelful of dirt reaches its maximum height when
v t t s( ) , sec. ( ) ,= = = −0 1 1 1at Since  the shovelful of dirt is

still below ground level at this time. There was not enough
speed to get the dirt out of the hole. Duck!

65. We have V r h
dV

dr
rh dV rh dr= = =1

3

2

3

2

3
2π π π, so and .

When the radius changes from a to a + dr, the volume

change is approximately dV ah= 2

3
π dr.

66. (a) Let x = edge of length of cube and S = surface area of

cube. Then S = 6 2x ,  which means
dS

dx
x= 12  and

dS x dx= 12 .  We want dS S≤ 0 02. , which gives

12 0 02 6 0 012x dx x dx xor≤ ≤. ( ) . . The edge should be

measured with an error of no more than 1%.

(b) Let V = volume of cube. Then V = x3,  which means

dV

dx
x dV x dx= =3 32 2and .  We have dx x≤ 0 01. ,

which means 3 3 0 01 0 032 2x dx x x V≤ =( . ) . ,

so dV V≤ 0 03. .  The volume calculation will be

accurate to within approximately 3% of the correct
volume.
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67. Let C = circumference, r = radius, S = surface area, and
V = volume.

(a) Since C r= 2π ,  we have 
dC

dr
dC dr= =2 2π πand so .

Therefore, 
dC

C

dr

r

dr

r
= = < =2

2

0 4

10
0 04

π
π

.
.

cm

cm
 The

calculated radius will be within approximately 4% of
the correct radius.

(b) Since S = 4 2πr ,  we have 
dS

dr
r= 8π  and so

dS r dr= 8π .  Therefore,

dS

S

r dr

r

dr

r
= =8

4

2
2

π
π

 ≤ =2 0 04 0 08( . ) . .  The

calculated surface area will be within approximately 8%
of the correct surface area.

(c) Since V r= 4

3
3π ,  we have 

dV

dr
r= 4 2π  and so

dV r dr= 4 2π . Therefore

dV

V

r dr

r

dr

r
= =

4

4

3

3
2

3

π

π
≤ =3 0 04 0 12( . ) . .

The calculated volume will be within approximately
12% of the correct volume.

68. By similar triangles, we have
a a

h6

20= +
, which gives

ah = 6a 120,+ or h = 6 120+ −a 1  The height of the lamp

post is approximately 6 120 ft.+ =−( )15 141  The estimated

error in measuring a was

da
dh

da
a≤ = − −1 120 2in =

1

12
ft. Since. ,  we have

dh a da= − ≤
⎛

⎝⎜
⎞

⎠⎟
=− −120 120 15

1

12
2 2( )

2

45
ft, so the

estimated possible error is ± ±2

45
ft or

8

15
in.

69. 
dy

dx
x x= −2 3sin cos . Since sin x and cos x are both

between 1and –1, the value of 2 sin x cos x is never greater

than 2. Therefore, 
dy

dx
≤ − = −2 3 1  for all values of x.

Since 
dy

dx
is always negative, the function decreases on

every interval.

70. (a) f  has a relative maximum at x = −2. This is where
′ =f x( ) ,0  causing ′f  to go from positive to negative.

(b) f has a relative minimum at x = 0. This is where
′ =f x( ) ,0  causing ′f  to go from negative to positive.

(c) The graph of f is concave up on (−1, 1) and on (2, 3).
These are the intervals on which the derivatives of f are
increasing.

(d)

–3 3

y

x

71. (a) A r
dA

dt
rdr

dA

dt

=

=

= ⎛
⎝⎜

⎞
⎠⎟

=

π

π

π π

2

2

2

2 2
1

3

4

3
( )

se

in.

cc

(b) dA dV

r dh

dh

dh

dt

=

=

=

=

4

3

1

3
4

3

1

3
2

1

2

2

π π

π π ( )

sec

in.

(c)
dA

dh
= =

4
3
1

4

3

2π
π in.

in.

72. (a) 2 4 60
15 2

15 2

30
3

2 2

a b
b a

V a b a a

dV

da
a

+ =
= −
= = −

= −

π π

π

( )

ππ

π π

a

a
a

a
b
b

2

2
2

30
3

2
20

2 20 4 60
5

=

=
+ =

=
( )

(b) The sign graph for the derivative 
dV

da

a
a= −3

2
20

π
( )  on

the interval (0,30) is as follows:

x

0 20 30

� �

By the First Derivative Test, there is a maximum at
x = 20.


