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Chapter 4
Applications of Derivatives

d
1l ff(X)=—F—=+—@-x)=

Section 4.1 Extreme Values of Functions

(pp. 187-195)

Exploration 1 Finding Extreme Values
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Critical point values: f(—1)=0.5, f(0)=0, f(1)=0.5
Endpoint values: f(-2)=0.4, f(2)=0.4

Thus f has absolute maximum value of 0.5 at x = -1 and
x =1, absolute minimum value of 0 at x = 0, and local
minimum value of 0.4 at x=-2 and x = 2.

[-2,2]by [-1,1]

. The graph of f” has zeros at x =1 and x = 1 where the

graph of f has local extreme values. The graph of f’ is not
defined at x = 0, another extreme value of the graph of f.

[-2,2]by [-1,1]

[

3. Using the chain rule and i(‘x‘) =-—, we find
dx X

ar -
de x4

Quick Review 4.1

1

2J4—x dx 2V4-x

. f'(x)zdi2(9—x2)_”2 =—(9—x2)_3/2 .i(g_xz)
x dx

=—9-x) V(20 = (92%
- X
. g'(x)=—sin (Inx) « d | o _Sndnx)
dx X
LW (x)=e> . d 2x = 2e**
X

. Graph (c), since this is the only graph that has positive

slope at c.

. Graph (b), since this is the only graph that represents a

differentiable function at a and b and has negative
slope at c.

. Graph (d), since this is the only graph representing a

function that is differentiable at » but not at a.

. Graph (a), since this is the only graph that represents a

function that is not differentiable at a or b.

. Asx— 37, Y9—x? = 0*. Therefore, lim_ f(x) = co.
x—3"

1. From the graph we can see that there are three critical 10. Asx — 3", \/9_7 — 0". Therefore, lim f(x)=oco.
points: x =-1, 0, 1. 3t
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1 d  ; 2y = 352 -2 10. Maximum at x = g, minimum at x = c;
- (@) E(x —2x)=3x"- The Extreme Value Theorem does not apply since the

= 3(1)2 o1 function is not continuous.

d 11. The first derivative f’(x) = —i+ l has a zero at x = 1.
(b) ——(x+2)=1 XX
/x

F@3=1

(¢) Left-hand derivative:

Critical point value: f(1)=1+1n1=1
Endpoint values: f(0.5)=2+1n0.5=1.307

1

Q- FQ) . [2+h)—202+h)]—4 f@)=7+Ind~1.636
lim ———————= lim
h—0~ h h—0~ h 1

i W +6h%+10h Maximum value isz+ln4 atx=4;

= lim ——

hT’O_ ) h minimum value is 1 at x = 1;
= lim (h" +6h+10)

h—0~ 1
=10 local maximum at(z, 2—In 2)

Right-hand derivative:

lim f2+h)-f(2) — lim [(2+h)+2]-4 12. The first derivative g’(x) = —e™* has no zeros, so we need
h=0* h h—0% h only consider the endpoints.
= lim — 1
h—0t h g-H= e V=¢ g()= el=—
= lim 1 e
;‘—’0+ Maximum value is e at x = —1;
Since the left-and right-hand derivatives are not equal, minimum value is 1 atx=1.
£7(2) is underfined. ¢
. o, 1
12. (a) The domain is x # 2. (See the solution for 11.(c)). 13. The first derivative h’(x) = P has no zeros, so we need
X
®) f'(x)= 3x% -2, x<2 only consider the endpoints.
L x>2 h(0)=In1=0 h(3)=In4

Maximum value is In 4 at x = 3;
Section 4.1 Exercises

1. Minima at (-2, 0) and (2, 0), maximum at (0, 2)

minimum value is 0 at x = 0.

14. The first derivative k’(x) = —2xe”* ’ has a zero at x = 0.

2. Local minimum at (-1, 0), local maximum at (1, 0) . . .
Since the domain has no endpoints, any extreme value must

3. Maxi t (0, 5) Note that there i ini ince th
aximum at (0, 5) Note that there is no minimum since the oceur at x=0. Since k(0)=e’02 ~1land lim k(x)=0, the

endpoint (2, 0) is excluded from the graph. X—>too
4. Local maximum at (-3, 0), local minimum at (2, 0), maximum value is 1 at x = 0.
maximum at (1, 2), minimum at (0, —1)
T
5. Maximum at x = b, minimum at x = ¢, ; 15. The first derivative f’(x) = cos(x + 4), has zeros

The Extreme Value Theorem applies because f is continuous

on [a, b], so both the maximum and minimum exist. T 5w

at x = 4 , X = 7
6. Maximum at x = ¢, minimum at x = b;
The Extreme Value Theorem applies because f is continuous Critical point values: x =

on [a, b], so both the maximum and minimum exist. 4
5

7. Maximum at x = ¢, no minimum; x=— f(x)=-1
The Extreme Value Theorem does not apply, because the

function is not defined on a closed interval. Endpoint values: x=

8. No maximum, no minimum;
The Extreme Value Theorem does not apply, because the 7 flx) =
function is not continuous or defined on a closed interval. 4

T

9. Maximum at x = ¢, minimum at x = a; Maximum value is 1 at x =
The Extreme Value Theorem does not apply, because the 4
5

function is not continuous. .. .
minimum value is -1 at x =



15.

16.

17.

18.

19.

20.

Continued
1].
\/5 ’

local maximum at(?, OJ

local minimum at (O,

The first derivative g’(x) = sec x tan x has zeros
at x =0 and x = 7 and is undefined at x = %
Since g(x) = sec x is also undefined at x = % the critical
points occur only at x =0 and x = 7.
Critical point values: x=0 g(x)=1
X=7 gx)=-1

Since the range of g(x) is (—eo, —1]U[1, o), these values

must be a local minimum and local maximum, respectively.

Local minimum at (0, 1); local maximum at (z, —1)

=3/5

. L 2 . .
The first derivative f’(x) = gx is never zero but is

undefined at x = 0.

Critical point value: x=0 fx)=0
Endpoint value: x=-3 f(x)= (—3)2/5
=3 <1552

Since f(x) >0 for x # 0, the critical point at x = 0 is a local
minimum, and since f(x)<(-3)%5 for -3 <x < 1, the
endpoint value at x = -3 is a global maximum.

Maximum value is 3 2> at x = -3;

minimum value is 0 at x =0.

=2/5

. . 3 . .
The first derivative f’(x) = gx is never zero but is

undefined at x = 0.
Critical point value: x=0 f(x)=0

Endpoint value: x=3 f(x)=3%5~1.933
Since f(x) < 0 for x < 0 and f(x) > 0 for x > 0, the critical
point is not a local minimum or maximum. The maximum

value is 33/5 atx=3.

\/

¥=1
[—2,6] by [-2,4]
Minimum value is 1 at x = 2.

N

#=-.8164973 lv=5.08BE621
[—6, 6] by [-2, 7]

Hinirurm
#=e L

To find the exact values, note that y’ = 3x% - 2, which is

2 .
zero when x =+ g Local maximum at

21.

22,

23.

24,
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—\/g, 4+ 4\9/8] = (—0.816, 5.089); local minimum at

g, 4—4\9/6J =(0.816,2.911)

Hinimur
#=1.3333233 Iy=-1510519
[—6, 6] by [-5, 20]

To find the exact values, note that

y'= 3xr+2x-8= (3x —4)(x+2), which is zero when

4
x=-2o0rx= 3 Local maximum at (-2, 17); local minimum

4 41
at| —, ——
(3 27)

-
f

[—6, 6] by [—4, 4]

Note that y’ = 3x2 —6x + 3 = 3(x —1)2, which is zero at

x = 1. The graph shows that the function assumes lower
values to the left and higher values to the right of this point,
so the function has no local or global extreme values.

[—4,4) by [-2,4]

Minimum valueis O at x=—1 and at x = 1.

J
e 1,

[—4.7, 47] by [-3.1, 3.1]

To confirm that there are no “hidden” extrema, note that

Y == =172 (2x) = % which is zero only at x =0
(x" =

)2
and is undefined only where y is undefined. There is a local
maximum at (0, —1).
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Hiniraum=—1
A=0

=1

[—15, 1.5] by [-0.5, 3]

The minimum value is 1 at x=0.

T

—

Minimur
w=0

—_—

T=1

[—4.7,4.7] by [-3.1, 3.1]

The actual graph of the function has asymptotes at x = %1,
so there are no extrema near these values. (This is an
example of grapher failure.) There is a local minimum

at (0, 1).

27.

AN

Y=z

Maxiraum
H=1

[—4.7,4.7] by [—3.1, 3.1]

Maximum value is 2 at x = 1;
minimum value is 0 at x =-1 and at x = 3.

28.
s/

Hiniraum
H=1 Y=6.5

[—4, 4] by [—80, 30]

Minimum value is —% atx =-3;
local maximum at (0, 10);

local minimum at(l, 1;)

/‘\\

¥=.5
[-5, 5] by [-0.7,0.7]

29.

Haxirum
#=1

. 1
Maximum value is E atx=1;

.. .1
minimum value is 3 atx=-1.

30.

31.

32.

33.

34.

35.

—

Hiniraury
H=-2 y=-2

(5, 5] by [~0.8, 0.6]

. 1
Maximum value is 5 atx=0;

- .1
minimum value is —3 atx=-2.

L/

[—6, 6] by [0, 12]

Maximum valueis 11 at x=5;
minimum value is 5 on the interval [-3, 2];
local maximum at (-5, 9)

o
/

[—3, 8] by [-5, 5]

Maximum value is 4 on the interval [5, 7];
minimum value is —4 on the interval [-2, 1].

v
/|

[—6, 6] by [—6, 6]

d

Maximum value is 5 on the interval [3, oo);
minimum value is -5 on the interval (—eo, —2].

N/

[—6, 6] by [0, 9]
Minimum value is 4 on the interval [-1, 3]

an

Haximum
#=-.0

¥=1.0341z87

[—4,4]1 by [-3,3]
Sx+4

3x

y = x2/3(1)+§x_1/3(x+ 2)=
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35. Continued crit. pt. derivative | extremum value
crit. pt. | derivative extremum value =0 0 minimum 0
-4 12 01 2 12 144
x=- 5 0 local max 5 1077 =1.034 . 0 local max 134 1512 _ 4460
5 125 '
x=0 undefined local min 0 x=3 undefined minimum 0

| \\/\// TN v

[—4,4] by [-3,3]

[—4.7,4.7] by [0, 6.2]

, 2 8x2 -8
y :x2/3(2x)+§x Bx?—4)= s , |20 x<1
W VIl x>l
crit. pt. derivative | extremum | value crit. pt. | derivative | extremum | value
x=-1 0 frunimum -3 x=1 | undefined | minimum | 2
x=0 undefined local max 0 0
x=1 0 minumum -3 ' \
37. f\
1
[—4,4]by [-1, 6]
Haximum
¥=1.414z136 Iv=z o[- x<0
[~2.35,2.35] by [~3.5, 3.5] Y= V2-0x. x>0
, 1 f
V=X ﬁ(—Zx) +()V4 - x2 crit. pt. | derivative extremum value
2N4—x . .
~ 2+ (4—x2) Ca- 252 x=0 undefined local min 3
\/4—x2 \/4—x2 x=1 0 local max 4
. L 41.
crit. pt. derivative extremum value
x=-2 undefined local max 0 /\ \/\
x= _\/5 0 minimum -2 J,‘ '\I.
x= \/5 0 maximum 2 [-4, 6] by [-2, 6]
x=2 undefined local min 0 ,_J2x-2, x<1
YT 2x+6, x>1
38.
crit. pt. | derivative extremum value
x=-1 0 maximum 5
L F—— x=1 undefined local min 1
[—4.7,47] by [-1, 5] x=3 0 maximum 5

y:xzoiz 31 (—1)+2)C\/3—X
VI—X

_—x?+4x(3-x)  —5x7+12x

243—-x 243—x
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42.

o
\/

Hinimum
4=3.154689  ¥=-3.079201
[-4. 6] by [-5. 5]
We begin by determining whether f’(x) is defined at
x =1, where
1, 1 15

——x"——x+—, x<1
fo=9 4" 27 4

x3—6x2+8x, x>1

Left-hand derivative:

1 5 1 15
_ ——A+h)" —=1+h)+—-3
fim SAED=SD _4 2 4
h—0~ h h—0~ h
- 2 f—
- lim h”—4h
h—0—  4h
1
= lim —(-h-4
h—)r{)1‘4( )
=-1
Right-hand derivative:
i SAEM = F D)
h—0t h
. (1+h)?*—6(1+h)? +8(1+h)-3
= lim
h—0t h
. K =31-h
h h—0t h
= lim (h* =3h—1)
h—0t
=-1
1 1
s x<1

Thus f/(x)=4 2" 2
3x2—12x+8, x>1

Note that —%x —%: 0 when x =—1, and

+4122 -
3x2—12x+8=0whenx=w

209)
_xJag 23
6 N

23

But 2—-——=0.845 <1, so the only critical points occur at

3
3
NE)

x=-1 andx:2+?:3.155.

crit. pt. | derivative | extremum value
x=-1 0 local max 4
x=3.155 0 local max =-3.079

43.(a) V(x)=160x—52x" +4x’
V/(x) =160 104x +12x* = 4(x —2)(3x — 20)

The only critical point in the interval (0, 5) is at x = 2.
The maximum value of V(x) is 144 at x = 2.

(b) The largest possible volume of the box is 144 cubic
units, and it occurs when x = 2.
44. (a) P'(x)=2-200x""
The only critical point in the interval (0, o) is at x = 10.
The minimum value of P(x) is 40 at x = 10.

(b) The smallest possible perimeter of the rectangle is
40 units and it occurs at x = 10, which makes the
rectangle a 10 by 10 square.

45. False. For example, the maximum could occur at a corner,
where f’(c) would not exist.

46. False. Consider the graph below.

.

N

47.E. i(4x—x2+6)=4—2x
dx
4-2x=0
x=2

f(2)=42)-(2)* +6=10
48. E. See Theorem 2.

49. B. i(ﬁ —6x+5)=3x>-6
dx

3x2-6=0
x=i\/5

50. B.

51. (a) No, since f’(x) = %(x —2)"™"3, which is undefined
atx=2.

(b) The derivative is defined and nonzero for all x # 2.
Also, f(2)=0 and f(x) >0 forall x # 2.

(¢) No, f (x) need not have a global maximum because its
domain is all real numbers. Any restriction of fto a
closed interval of the form [a, b] would have both a
maximum value and a minimum value on the interval.

(d) The answers are the same as (a) and (b) with 2 replaced
by a.

—x3+9x, x<-30r0<x<3

52. Note that f(x) =
f@&®) { —3<x<0orx2>3.

x3—9x,
-3x>+9, x<-3or0<x<3

Therefore, f'(x) =
e {3)62_9,

—3<x<0orx>3.

(a) No, since the left- and right-hand derivatives at x = 0 are
-9 and 9, respectively.



52. Continued

(b) No, since the left- and right-hand derivatives at x = 3 are
—18 and 18, respectively.

(¢) No, since the left- and right-hand derivatives at x = -3
are —18 and 18, respectively.

(d) The critical points occur when
f'(x)=0(atx =% \/3) and when f’(x) is undefined (at
x =0 or x = £3). The minimum value is 0 at x =-3, at

x =0, and at x = 3; local maxima occur at

(—/3, 6¢/3) and (+/3, 6v/3).

53.(a) f'(x)= 3ax? +2bx+cisa quadratic, so it can have
0, 1, or 2 zeros, which would be the critical points of f.
Examples:

J
/

[-3. 3] by [-5, 5]

The function f(x) = x® —3x has two critical points at

x=-land x=1.

/
e

[-3. 3] by [-5, 5]

The function f(x) = x* —1 has one critical point at

.
e

[-3. 3] by [-5, 5]

The function f(x) = x + x has no critical points.

(b) The function can have either two local extreme
values or no extreme values. (If there is only one critical
point, the cubic function has no extreme values.)

54. (a) By the definition of local maximum value, there is an
open interval containing ¢ where f(x) < f(c), so

f(x)=fe)=0.

(b) Because x — ¢*, we have (x — ¢) > 0, and the sign of the
quotient must be negative (or zero). This means the
limit is nonpositive.

(¢) Because x = ¢, we have (x — ¢) < 0, and the sign of the
quotient must be positive (or zero). This means the limit
is nonnegative.
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(d) Assuming that f’(c) exists, the one-sided limits in
(b) and (c) above must exist and be equal. Since one is
nonpositive and one is nonnegative, the only possible
common value is 0.

(e) There will be an open interval containing ¢ where
f(x) —f(c) 2 0. The difference quotient for the left-hand
derivative will have to be negative (or zero), and the
difference quotient for the right-hand derivative will
have to be positive (or zero). Taking the limit, the left-
hand derivative will be nonpositive, and the right-hand
derivative will be nonnegative. Therefore, the only
possible value for f’(c) is 0.

55. (a)

[-0.1, 0.6] by [-1.5, 1.5]

f(0)=01is not a local extreme value because in any
open interval containing x = 0, there are infinitely many
points where f (x) = 1 and where f(x)=-1.

(b) One possible answer, on the interval [0, 1]:

1
(I-x)cos—, 0<x<l1

f)= 1-x
0, x=1

This function has no local extreme value at x = 1. Note
that it is continuous on [0, 1].

Section 4.2 Mean Value Theorem
(pp. 196-204)

Quick Review 4.2

1. 2x*-6<0
2x* <6
x*<3
- 3<x<\/§
Interval: (—\/g, \/5)

2.3x*-6>0
3x?>6
x2>2
x<—2 orx>2
Intervals: (—oo, — V2)UW2, )

3. Domain: 8—2x% >0
8 >2x?
4> 52
—2<x<L2
The domain is [-2, 2].

4. f is continuous for all x in the domain, or, in the interval
[-2, 2].
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5. f is differentiable for all x in the interior of its domain,
or, in the interval (-2, 2).

6. We require x? —1#0, so the domain is x # *1.
7. f is continuous for all x in the domain, or, for all x # £1.
8. f is differentiable for all x in the domain, or, for all x # %1.

9. 7=-2(-2)+C
T=4+C
C=3

10. -1=()* +2()+C
-1=3+C
C=—4

Section 4.2 Exercises
1. (a) Yes.

(b) f'(x):ix2 +2x—1=2x+2
dx

2—(-1

2c+2= =3
1-0
1
c=—.
2
2.(a) Yes.
, d o3 _2 i3
b == =z
(b) (%) o 3*
2 5 _1-0_,
3 1-0
c=—.
27

3. (a) No. There is a verticle tangent at x = 0.
4. (a) No. There is a corner at x = 1.
5.(a) Yes.
1
Jiex?

1 :(7r/2)—(—7r/2):7r

’ _i - =1 —
) f (x)—deIH x

12 1-(-1 2
1—02:2
T
c=+\1-4/7* =0.771.
6. (a) Yes.
d 1
b) f/(x)=—In(x-1=
(b) f'(x) e (x=1 1
1 _ln3—ln1
c—1 4-2
=472 12820
In3-In1l

7. (a) No. The function is discontinuous at x =

SR

8. (a) No. The split function is discontinuous at x = 1

=

9. (a) The secant line passes through (0.5, (0.5)) = (0.5, 2.5)
and (2, f(2)) = (2, 2.5), so its equation is y = 2.5.

(b) The slope of the secant line is 0, so we need to find
¢ such that f* (¢)=0.

1-¢?%=0

=1

c=1
fl=f=2

The tangent line has slope 0 and passes through (1, 2),
S0 its equation is y = 2.
10. (a) The secant line passes through (1, f (1)) = (1, 0) and
3, f3) =3, V2),s0 its slope is
V2-0_ 21
3-1 2 2
1

2

or y=0.707x—-0.707.

The equationis y=—=(x—1)+0

1 1
ory=—=x——1,
RN

(b) We need to find ¢ such that f’(c) =

-

L1
24c—1 \/z
2We—-1=+2
c—1=l
2

3

c=—

2

flor= f(;)= g -5

1
The tangent line has slope —= and passes through

V2
(3 1) Its equation isy—l(x—3)+lor
2 \2) 22U 2) 2

1 1
y=—4=x——,0ry=0.707x-0.354.
V2722
11. Because the trucker’s average speed was 79.5 mph, and by
then Mean Value Theorem, the trucker must have been
going that speed at least once during the trip.

12. Let f (f) denote the temperature indicated after # seconds.
We assume that f’(¢) is defined and continuous for
0<t<20. The average rate of change is 10.6° F/sec.
Therefore, by the Mean Value Theorem, f"(c) =10.6°F/sec
for some value of ¢ in [0, 20]. Since the temperature was
constant before ¢ = 0, we also know that f”(0) = 0°F/min.
But f’ is continuous, so by the Intermediate Value
Theorem, the rate of change f’(f) must have been
10.1°F/sec at some moment during the interval.

13. Because its average speed was approximately 7.667 knots,
and by the Mean Value Theorem, it must been going that
speed at least once during the trip.



14. The runner’s average speed for the marathon was
approximately 11.909 mph. Therefore, by the Mean Value
Theroem, the runner must have been going that speed at
least once during the marathon. Since the initial speed
and final speed are both 0 mph and the runner’s speed is
continuous, by the Intermediate Value Theorem, the
runner’s speed must have been 11 mph at least twice.

15. (a) f/(x)=5-2x

Since f’(x) >0 on (—oo, ;J, ff(x)=0atx= %, and
, 5
f'(x)<0on 5, oo |, we know that f (x) has a local
maximum at x = é Since f 3 = é, the local
2 2 4

5 25
maximum occurs at the point(z, 4). (This is also a
global maximum.)

(b) Since f’(x) >0 on (—oo, i), f(x) is increasing on

-3

(c) Since f’(x) <0 on (;, oo), f(x) is decreasing on

é (=)
5 =
16. (a) g’'(x)=2x-1

Since g’(x) <0 on (—oo, ;), gx)=0atx= %, and
, 1

g’'(x)>0on 5, oo |, we know that g (x) has a local
.. 1

minimum at x = 5

Since g(;) = —?, the local minimum occurs at the
. [1 49 .. ..
point >4 (This is also a global minimum.)
. , 1 .. .
(b) Since g’(x) >0 on E, oo |, g(x) is increasing on

1)

(c) Since g’(x) <0 on (—oo, ;), g(x) is decreasing on
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17. (a) W' (x)= —%
X

Since h’(x) is never zero is undefined only where h(x) is
undefined, there are no critical points. Also, the domain
(—eo, 0) U (0, o) has no endpoints. Therefore, A(x) has
no local extrema.

(b) Since h’(x) is never positive, h(x) is not increasing on
any interval.

(c) Since h’(x) < 0 on (—oo, 0) U (0, o), h(x) is decreasing on
(—oo, 0) and on (0, o).

18. (a) k'(x)= —%
-

Since k’(x) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Also, the
domain (—ee, 0) U (0, o) has no endpoints. Therefore,
k(x) has no local extrema.

(b) Since k’(x) > 0 on (—e, 0), k(x) is increasing on
(o0, 0).

(c) Since k’(x)<0 on (0, =), k(x) is decreasing on (0, ).

19. (a) f'(x)=2¢>"
Since f’(x) is never zero or undefined, and the domain
of f(x) has no endpoints, f(x) has no extrema.
(b) Since f’(x) is always positive, f(x) is increasing on
(—oo, oo),
(c) Since f’(x) is never negative, f(x) is not decreasing on
any interval.
20. (a) f'(x)=-0.5¢">*

Since f’(x) is never zero or undefined, and the domain
of f(x) has no endpoints, f(x) has no extrema.

(b) Since f’(x) is never positive, f(x) is not increasing on
any interval.
(c) Since f’(x) is always negative, f(x) is decreasing on
(—oo, oo),
1

20x+2

In the domain L—2, oo), y” is never zero and is undefined

21.(a) y'=—

only at the endpoint x = —2. The function y has a local
maximum at (-2, 4). (This is also a global maximum.)

(b) Since y” is never positive, y is not increasing on any
interval.

(c) Since y” is negative on (=2, ), y is decreasing on

[-2. ).
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22.(a) v =4x° —20x = 4x(x +/5)x =/5)
The function has critical points at x = —+/5, x =0, and
x=4/5. Since y’ < 0 on (s, —+/5) and (0, +/5) and
y'>0on (—\/g, 0) and (\/g, o), the points at x = i\/g

are local minima and the point at x =0 is a local
maximum. Thus, the function has a local maximum at

(0, 9) and local minima at (=5, — 16) and (+/5,~ 16).
(These are also global minima.)
(b) Since y" >0 on (—x/g, 0) and (x/g, o), y is increasing on

[—/5, 0] and [/5, o).

(c) Since y’ >0 on (— oo, — \/g) and (0, \/g), y is decreasing
on (—ee,—/5] and [0, /5,

23.

Haximur
W=2.BBEBES? |Y=2.079201Y

[—4.7, 47] by [-3.1,3.1]

1
“D++/4—
iy VA

_ —3x+8

24— x

. . 8
The local extrema occur at the critical point x = 3 and at

(@ f()=x-

the endpoint x = 4. There is a local (and absolute)

33

and a local minimum at (4, 0).

maximum at(S, 16] or approximately (2.67, 3.08),

(b) Since f’(x)>0 on(—oo, 2), f(x) is decreasing on

(c) Since f’(x) <0 on (2, 4), f(x) is decreasing on
4]
3 .

"

Hinimur
H=-2 ¥=-7.550526

[-5, 5] by [~ 15, 15]

4x+8
3,23

(a) g’(x)=x1/3(1)+§x"2/3(x+8)=

The local extrema can occur at the critical points x = -2
and x = 0, but the graph shows that no extrema occurs at
x=0. There is a local (and absolute) minimum at

(-2,— 6%/5 ) or approximately (-2, —7.56).
(b) Since g’(x) > 0 on the intervals (-2, 0) and (0, ), and
g(x) is continuous at x = 0, g(x) is increasing on [-2, o).
(c) Since g’(x) < 0 on the interval (—eo, -2), g(x) is

decreasing on (—ee, —2].

2.
’.!g{izm“m V=25
[—5,5] by [—0.4,04]
@ W= EFDED-C0C) -4
(x* +4) (X% +4)?
_+29(x-2)

(x* +4)?
The local extrema occur at the critical points, x = 2.

There is a local (and absolute) maximum at(—2, i)
.. 1
and a local (and absolute) minimum at| 2, — Z .

(b) Since h’(x) >0 on (-, —2) and (2, =), h(x) is
increasing on (—eo, —2] and [2, o).

(c) Since h’(x) < 0 on (=2, 2), h(x) is decreasing on [-2, 2].

T
ST

[—4.7,4.7] by [-3.1, 3.1]

(2 -HD)-x2x) P +4

(x? —4)? (x* —4)?
Since k”(x) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Since there
are no critical points and the domain includes no
endpoints, k(x) has no local extrema.

(@) k'(x)=

(b) Since k’(x) is never positive, k(x) is not increasing on
any interval.
(c) Since k’(x) is negative wherever it is defined, k(x) is

decreasing on each interval of its domain; on (—ee, —2),
(=2,2), and (2, o).



27.

28.

/

%

Hinimura
#=.55037061 |Y=-2.620895

(@) f'(x)=3x>-2+2sinx
Note that 3x2~2>2 for | x| > 1.2 and |2 sin x| <2 for
all x, so f’(x) >0 for |x| = 1.2. Therefore, all critical
points occur in the interval (1.2, 1.2), as suggested by
the graph. Using grapher techniques, there is a local
maximum at approximately (-1.126, —0.036), and a
local minimum at approximately (0.559, —2.639).

(b) f (x) is increasing on the intervals (—eo, —1.126] and
[0.559, =), where the interval endpoints are
approximate.

(¢) f (x) is decreasing on the interval [-1.126, 0.559], where
the interval endpoints are approximate.

7

e

[—6, 6] by [—12, 12]

@ g'x)=2-sinx
Since 1 £ g’(x) < 3 for all x, there are no critical points.
Since there are no critical points and the domain has no
endpoints, there are no local extrema.

(b) Since g’(x) > 0 for all x, g(x) is increasing on (—oe, o).

(c) Since g’(x) is never negative, g(x) is not decreasing on
any interval.

2

2&]10:%;+C

30. f(x)=2x+C

3. f(x)=x’—x*+x+C

32. f(x)=-cosx+C

33, f(x)=e' +C

M. f(x)=In(x-D+C

35.

f@)=1
Lo
2

1
f(xX)=—+C,x>0

X

1

2

1

—+—, x>0

X

Section 4.2

36. fo=x"+cC

fH=-2
" yc==2
1+C==-2
C=-3
f(x)=x”4 -3
37. F)=ln(x+2)+C
fEH=3
In(-1+2)+C=3
0+C=3
Cc=3

fx)=In(x+2)+3

38. f(x)=x>+x—sinx+C

f0)=3
0+C=3
Cc=3

f(x)=x2+x—sinx+3

39. Possible answers:

(@)
N

[-2, 4] by [-2, 4]

(b) \ﬁ

[-1, 4] by [0, 3.5]

N

[-1, 4] by [0, 3.5]

(c)

40. Possible answers:

f/\\

[=1,5]by [-2,4]

) \\x_J//f

[—1,51by [~1,8]

171
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40. Continued
(©

Y
=1,5]by [—1, 8]

—

(@)

[
[-1,5]1by [-1, 8]

41. One possible answer:

|
%

[-3, 3] by [-15, 15]

42. One possible answer:

/\/

[—3, 3] by [~70, 70]

43. (a) Since v'(t) =1.6, v(t) =1.6t+ C. Butv(0)=0,s0 C=0
and v(f) = 1.6¢. Therefore, v(30) = 1.6(30) = 48. The
rock will be going 48 m/sec.

(b) Let s() represent position.
Since s°(t) = v(t) = 1.6¢, s(t) = 0.872 + D. But 5(0) =0,
so D =0 and s(r) = 0.8¢2. Therefore,
5(30) = 0.8(30)2 = 720. The rock travels 720 meters in
the 30 seconds it takes to hit bottom, so the bottom of
the crevasse is 720 meters below the point of release.

(¢) The velocity is now given by v(f) = 1.6¢ + C, where
v(0) = 4. (Note that the sign of the initial velocity is the
same as the sign used for the acceleration, since both act
in a downward direction.) Therefore, v(r) = 1.6¢ + 4,
and s(¢) = 0.8¢2 + 4t + D, where s(0) =0 and so D = 0.
Using s(r) = 0.8¢2 + 4¢ and the known crevasse depth
of 720 meters, we solve s(f) = 720 to obtain the
positive solution ¢ = 27.604, and so v(f) = v(27.604) =
1.6(27.604) + 4 = 48.166. The rock will hit bottom after
about 27.604 seconds, and it will be going about
48.166 m/sec.

44. (a) We assume the diving board is located at s = 0 and the
water at s = 0, so that downward velocities are positive.
The acceleration due to gravity is 9.8 m/sec?, so

v'(1)=9.8 and v(r) = 9.8t + C. Since v(0) = 0, we have

v(t) = 9.8¢. Then the position is given by s(f) where

s'(t) = (1) =9.8t, 50 s(t) = 4.9¢” + D. Since 5(0) = 0, we

have s(f)=49¢%. Sloving s(f) = 10 gives

= 10 = @, so the positive solution is t = E The
49 49 7

velocity at this time is v(l;)) = 9.8(170) =14 m/sec.

(b) Again v(¢) = 9.8¢ + C, but this time v(0) = -2 and so
v(t) =9.8t—2. The s'(t) = 9.8t — 2, s0 5(t) =

4.9:2—2¢+ D. Since s(0) = 0, we have (1) =
4.9:% 21, Sloving s(#) = 10 gives the positive solution

(= 2+10V2
9.8
The velocity at this time is

V[ZHO\/EJ - 9.8[2+91?;/§)— 2=10+/2 m/sec or

9.8
about 14.142 m/sec.

~1.647 sec.

45. Because the function is not continuous on [0, 1]. The
function does not satisfy the hypotheses of the Mean Value
Theorem, and so it need not satisfy the conclusion of the
Mean Value Theorem.

46. Because the Mean Value Theorem applies to the function
y=sin x on any interval, and y = cos x is the derivative of
sin x. So, between any two zeros of sin x, its derivative,
cos x, must be zero at least once.

47. f(x) must be zero at least once between a and b by the
Intermediate Value Theorem. Now suppose that f( x) is zero
twice between a and b. Then by the Mean Value
Theorem, f’(x) would have to be zero at least once between
the two zeros of f (x), but this can’t be true since we are
given that f’(x) # 0 on this interval. Therefore, f(x) is zero
once and only once between a and b.

48. Let f(x) = x* +3x+1. Then f(x) is continuous and
differentiable everywhere. f’(x) = 4x3 + 3, which is never
zero between x =-2 and x=-1. Since f(-2) = 11 and
f(=1)=-1, exercise 47 applies, and f( x) has exactly one
zero between x = -2 and x = —1.

49. Let f(x) = x+In (x + 1). Then f(x) is continuous and
differentiable everywhere on [0, 3]. f/(x) =1+ %, which
X+

is never zero on [0, 3]. Now £ (0) =0, so x =0 is one
solution of the equation. If there were a second solution,
f(x) would be zero twice in [0, 3], and by the Mean Value
Theorem, f’(x) would have to be zero somewhere between
the two zeros of f(x) .But this can’t happen, since f’(x) is
never zero on [0, 3]. Therefore, f(x) = 0 has exactly one
solution in the interval [0, 3].



50. Consider the function k(x) =f(x) — g(x). k(x) is continuous
and differentiable on [a, b], and since
k(@) =1 (a) - g(@) = 0 and k(b) = £ (b) — g(b) = 0, by the
Mean Value Theorem, there must be a point ¢ in (a, b)
where k’(¢) = 0. But since k’(¢) = f’(¢) — g’(c), this means
that f’(c)— g’(c), and c is a point where the graphs of fand
g have parallel or identical tangent lines.

P
fgprﬂfﬁ*’

(-1, )by [-2, 2]

51. False. For example, the function x°

(=1, 1), but £’(0) = 0.

is increasing on

52. True. In fact, f'is the increasing on [a, b] by Corollary to the
Mean Value Theorem.

1
-1

o2 3
53.A. f/(x)= E o
3
oo J@ = f(0)
54. B. f(x)—74_0
_3.78-2980.96
- 4-0

=—744.30, negative slope.

55.E L (2Jx-10)
dx
_2 _ 1
wx x|
56. D. x*is not differentiable at x = 0.

57. (a) Increasing: [-2, —1.3] and [1.3, 2];
decreasing: [-1.3, 1.3];
local max: x =—1.3
local min: x = 1.3

(b) Regression equation: y = 3x% -5

N/

N

[-2.5, 2.5] by [-8, 10]

(¢) Since f’(x)=3x2 =5, we have f(x)= x> -5x+C.
But £ (0)=0, so C = 0. Then f(x) =x° - 5x.
58. (a) Toward: 0 <r<2and S5<r<8;away:2<r<5

(b) A local extremum in this problem is a time/place where
Priya changes the direction of her motion.
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(c) Regression equation:
y=-0.0820x" +0.9163x* —2.5126x +3.3779

\

[~0.5, 8.5] by [—0.5, 5]

(d) Using the unrounded values from the regression
equation, we obtain
f/(t)=—-0.24591> +1.8324¢ - 2.5126. According to the
regression equation, Priya is moving toward the motion
detector when f'(1) <0 (0 <t <1.81 and 5.64 <t <8),
and away from the detector when
/(>0 (1.81<t<5.64).

11
50 JO=F@ _b a__1

b-a  b-a ab

f’(c)=—iz, ) —iz—i and ¢ = ab.
c

62 a
Thus, c=+ab.

2 2
60. Jb)=fla) _b"=a” _
b—a b—a

b+a

F(e)=2¢, 50 2c=b+a andc=¥.

61. By the Mean Value Theorem, sin b — sin a = (cos ¢)(b — a)
for some ¢ between a and b. Taking the absolute value of

both sides and using ‘cosc‘ <1 gives the result.

62. Apply the Mean Value Theorem to f on [a, b].

Since f(b) < f(a), w is negative, and
—a
hence f’(x) must be negative at some point between

a and b.

63. Let f(x) be a monotonic function defined on an interval D.
For any two values in D, we may let x be the smaller value
and let x be the larger value, so x; < x,. Then either
f(x) < f(x,) (if fis increasing), or f(x,) > f(x,) (f f is
decreasing), which means f(x,) # f(x,). Therefore, f is
one-to-one.

Section 4.3 Connecting f” and f” with the
Graph of f (pp. 205-218)

Exploration1 Finding f from f”

1. Any function f(x) = x* —4x® + C where C is a real number.
For example, let C =0, 1, 2. Their graphs are all vertical
shifts of each other.

2. Their behavior is the same as the behavior of the function
fof Example 8.
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Exploration 2 Finding f from f’ and f”

1. fhas an absolute maximum at x = 0 and an absolute
minimum of 1 at x =4. We are not given enough
information to determine f (0).

2. fhas a point of inflection at x = 2.

=

[—3,5] by [-5,20]

Quick Review 4.3

1. x2-9<0

10. Left end behavior model: 0
Right end behavior model: 375
Horizontal asymptotes: y =0, y =375

Section 4.3 Exercises

1. y'=2x-1
1
Intervals x<— xX>—
2 2
Sign of y’ - +
Behavior of y Decreasing Increasing

Graphical support:

\

/

(x+3)x-3)<0 \M/
Intervals | x<-3 | -3<x<3 | 3<x fiipum ¥=-1.25
Sign of [—4,4] by [-3,3]
(x+3)(x—3) * - + 15
Local (and absolute) minimum at(,—)
Solution set: (-3, 3) 2 4
5 R 2.y =—6x*+12x =—6x(x-2)
x(x+2Xx-2)>0 Intervals x<0 O<x<2 2<x
Intervals | x<-2 | -2<x<0 | O<x<2 | 2<x Sign of y’ - + -
Sign of + + Behavior of y Decreasing Increasing Decreasing
x(x+2)x-2) Graphical support:
Solution set: (=2, 0) U (2, )
3. f: allreals \ /\
S+ all reals, since f"(x) = xe” +¢* "\U/’ \
4. f: all reals RE s
[—4, 4] by [—6, 6]
[ x#0, since f'(x)= é)c_y5
5 Local maximum: (2, 5);
5. fix#2 local minimum: (0, -3)
-2)()—(x)(1 - 3.y =8x —8x=8x(x—1) (x+1
£ x 2, since 1y = CZRO=WO 2 ¥ =8x" —8x =8x(x—1) (x+1)
(x=2) (x=2) Intervals x<-1 -1<x<0 | 0<x<l I<x
6. f: all reals Sign of B + B +
. . , 2 s
f’ x#0, since f'(x) = gx Behavior . . . :
Decreasing | Increasing | Decreasing | Increasing
7. Left end behavior model: 0 ofy

Right end behavior model: —x“e*
Horizontal asymptote: y =0

8. Left end behavior model: x%¢™*

Right end behavior model: 0
Horizontal asymptote: y =0

9. Left end behavior model: 0
Right end behavior model: 200
Horizontal asymptote: y — 0, y = 200

Graphical support:

]
inipum u

=1 ¥=-1
[—4,4]by [-3,3]

Local maximum: (0, 1);

local (and absolute) minima: (-1, —1) and (1, —-1)




4. y/:xellx(_x—2)+e1/x zellx (1_1)
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7.y =12x% +42x+36 = 6(x +2) (2x +3)

X
Intervals x<0 O<x<l1 1<x
Sign of y’ + - +
Behavior of y Increasing Decreasing Increasing

Graphical support:

.

¥=2.7482048
Local minimum: (1, ¢)

2
5 Y= x— (2 + (8- ()= 32

248 —x2 V8—x2

Intervals x<-=2 —2<x< 3 3 <x
2 2
Sign of y’ + - +
Behavior of y | Increasing Decreasing Increasing
v’ =24x+42=6(4x+17)
7 7
Intervals xX<—— -——<x
4 4
Sign of y’ - +
Behavior of y Concave down Concave up

Graphical support:

i
y

Intervals —J8<x<=2 2<x<2 2<x<\/§

Sign of y” - + - BETE hv=woas
Behavior of y Decreasing Increasing | Decreasing [—4, 4] by [—80, 20]

Graphical support:

Haximur
H=2 Y=y

[—3.02, 3.02] by [-6.5, 6.5]

Local maxima: (—\/g , 0)and (2, 4);
local minima: (-2, —4) and (\/g , 0)

Note that the local extrema at x = £ 2 are also absolute

7
(a) (—4, °°)
7
(b) (—w, —4)

8.y =—4x’+12x7—4
Using grapher techniques, the zeros of y” are x = -0.53,
x=0.65, and x = 2.88.

Intervals | Xx<—0.53 | —0.53<x<065 | 065<x<283 | 288 <x

Signof ¥’ - -
extrema. ignof y + +
-2x x<0 Behavior of y Increasing Decreasing Increasing Decreasing
6. ’ — b
YTax, x>0 Y’ =—12x% + 24x = —12x(x - 2)
Intervals x<0 x>0 Intervals x<0 0O<x<?2 2<x
Sign of y’ + " Sign of y” ~ N -
Behavior of y Increasing Increasing Behavior of y | Concave down | Concave up Concave down
Graphical support: Graphical support:

n

7

[—4,4] by [-3, 6]

Local minimum: (0, 1)

A

Haximurai
w=z.B793036 Y=16.234422

[~2, 4] by [—20, 20]
(@) (—oo, —0.53] and [0.65, 2.88]
(b) [-0.53, 0.65] and [2.88, =)
(©) 0,2)
(d) (oo, 0) and (2, o)
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8. Continued Graphical support:

(e) Local maxima: (-0.53, 2.45) and (2.88, 16.23); local
minimum: (0.65, —0.68)
Note that the local maximum at x = 2.88 is also an
absolute maximum.

() (0, 1) and (2, 9)

T
N.-‘_‘-’_‘—|_._

[—8, 8] by [0, 10]

2
9. y'=gx*“5 (@) (0,%0)
b) (—,0
Intervals x<0 O<x ®) ¢ )
. , 2 x<l1
Sign of + + 11. v/ =<7
g Y Y {—Zx, x>1
Behavior of y Increasing Increasing
8 Intervals x<1 1<x
n__ 9 X_9/5
Y 25 Sign of y’ + —
Intervals x<0 0<x Behavior of y Increasing Decreasing
Sign of y” + - ” 0, x<l
M ) x>1
Behavior of y Concave up Concave down
Graphical support: Intervals x<1 I<x
Sing of y” 0 -
(—‘f’_’_‘- Behavior of y Linear Concave down
__,_,_,-) Graphical support:
[—6, 6] by [—1.5, 7.5] .
(a) (=00, )
(b) None
(€) (==, 0) [—2, 3] by [-5, 3]
(d) (0, =) (a) None
(e) None (b) (1, o)
® (0.3) 12 =o'
10. y' = —%x“m y'=e
Since y” and y” are both positive on the entire domain, y is
Intervals x<0 O<x increasing and concave up on the entire domain.
Sign of y’ - - Graphical support:
Behavior of y Decreasing Decreasing
” 2 =5/3
=—x
)
Intervals x<0 O<x
: ” [0, 27r] by [0, 20]
Sing of y - +
. (@) (0,2m)
Behavior of y Concave down Concave up

(b) None



Y’ =24x-12x"
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13. y=xe*
y=e"+xe'
Intervals x<-1 x>-1
Sign of y’ - +
Behavior of y Decreasing Increasing
Y’ =2¢" +xe*
Intervals x<-2 x>-2
Sign of y” - +
Behavior of y Concave down Concave up

3

14. y=xV9—x?

Y =v9-x? - o
9—x?
2
Intervals —3<x<—& —@<x & ﬁ<x<3
2 2 2 2
Sign
of y - + -
Behavior Decreasing Increasing Decreasing
of y
. 3x X _
Y __(9_x2)1/2 + 9—x2)¥? -
y’=0 atx=0
Intervals -3<x<0 0<x<3
Sign of y” + -
Behavior of y Concave up Concave down
1
15. y' =
1+x2
since y” > 0 for all x, y is always increasing:
d - - -2
V=) =) P @ =
dx 1+x7)
Intervals x<0 O<x
Sign of y” + -
Behavior of y Concave up Concave down
0,0
16. y=x’(4-x)
y =12x> —4x*
Intervals x<0 0<x<3 x>3
Sign of y’ + + -
Behavior of y Increasing Increasing Decreasing

Intervals x<0 O<x<?2 x>2
Sign of y” - + -
. Concave Concave Concave
Behavior of y
down up down
(0,0) and (2, 16)
17. y=x"x—4)=x¥?—4x"3
4 -
’=fx”3—£x_2/3=4x 4
3 3 3x2/3
Intervals x<0 O<x<l1 1<x
Sign of y’ - - +
Behavior of y Decreasing Decreasing | Increasing
4
n_% -3 +§x—5/3 _ 4x+8
9 9 9x5/3
Intervals x<-=2 2<x<0 O<x
Sign of y” + - +
. Concave Concave Concave
Behavior of y
up down up

18.

(=2,632) = (=2,7.56) and (0, 0)

y=x"2(x+3)

1 _ . . .
y = Ex V2 (x+3)+x"? yis always increasing, so there are

no critical points

” 1 X

for y”.

-3

= e - 4(x)"? =

19.

Intervals O<x<l1 x>1
Sing of y” + -
Behavior of y Concave up Concave down

1, 4)

We use a combination of analytic and grapher techniques to
solve this problem. Depending on the viewing window
chosen, graphs obtained using NDER may exhibit strange
behavior near x = 2 because, for example,
NDER (y, 2) = 1,000,000 while y” is actually undefined at

x=2. The graph

3 2

-2
ofy:x i
X—

vV

l

[—4,7,4.7] by [-5, 15]

+x—1

is shown below.
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19. Continued

Ve x=2)GBx> —4x+1)—(x*=2x>+x—-D(1)

(x=2)*
_2x7—8x? +8x-1

(x=2)?
The graph of y” is shown below.

V/
A

[—4,7,4.7] by [—10, 10]
The zeros of y” are x = 0.15, x = 1.40, and x = 2.45.

2D (20 - (22 + D@ + D (2x)

(x2+D*
_ 2+ D (=2x)—4x(-x*> +1)
x2+1)°

22X —6x  2x(x*-3)
2+ PP

Intervals | x<0.15 [0.15<x<140|140<x<2| 2<x<245| 245<x
Sign - + - - +
of y

Beh?vior Decreasing | Increasing | Decreasing | Decreasing | Increasing
ory

. (x=2)%(6x> —16x+8)— (2x” —8x” +8x—1)(2)(x —2)
) (x-2)*
_(x=2)(6x" —16x+8)—2(2x’ —8x” +8x—1)
) (x-2)’
_2x7—12x7 +24x - 14
)
_2(x—D(x*=5x+7)
IRCErS

The graph of y” is shown below.

_

N
Zero \

#=1 Y=0
[—4,7, 4.7] by [~ 10, 10]

Note that the discriminant of x> —5x +7 is

(=5)% = 4(1(7) = -3, s0 the only solution of y” =0isx=1.

Intervals x<1 1<x<?2 2<x
Sign of y” + - +
. Concave Concave Concave
Behavior of y
up down up
1, n
L (PP HDM)-x(2x)  —xP+1
20. y'= 2,112 T2
(x"+1) (x”+1)
Intervals x<-1 -l<x<1 1<x
Sign of y’ - + -
Behavior of y Decreasing Increasing Decreasing

Intervals x<—\/§ —/3<x<0 O<x<x/§ \/§<x
Sign
of y” - + - +
Behavior | Concave Concave
Concave up Concave up
of y down down

, 0),[@,?} and[—ﬁ—*f)

21. (a) Zero: x = *£1;
positive: (—eo, —1) and (1, o0);
negative: (-1, 1)
(b) Zero: x=0;
positive: (0, );
negative: (—eo, 0)

22. (a) Zero: x = 0, = 1.25;
positive: (—=1.25, 0) and (1.25, oo);
negative: (—oo, —1.25) and (0, 1.25)

(b) Zero: x =% 0.7,
positive: (—eo, —0.7) and (0.7, o0);
negative: (-0.7, 0.7)

23. (a) (~o0, —2] and [0, 2]
(b) [-2, 0] and [2, =)

(¢) Local maxima: x =-2 and x = 2;
local minimum: x =0

24. (a) [-2, 2]
(b) (=e0, —2] and [2, =)

(¢) Local maximum: x = 2;
local minimum: x = -2

25. (@) v(n)=x"(t)=2t-4
(b) a(r)=v'(r)=2

(c) It begins at position 3 moving in a negative direction. It
moves to position —1 when 7 = 2, and then changes
direction, moving in a positive direction thereafter.

26. (a) v(1)=x"(t)=-2-2¢
(b) a(n)=v'(t)=-—2

(¢) In begins at position 6 and moves in the negative
direction thereafter.

27.(a) v()=x"(t)=3t> -3
(b) a(®)=Vv'(t)=6¢



27. Continued

(c) It begins at position 3 moving in a negative direction. It
moves to position 1 when ¢ =1, and then changes
direction, moving in a positive direction thereafter.

28. (a) v()=x'() = 61— 61°
(b) at)=Vv'(t)=6-12¢

(c) It begins at position 0. It starts moving in the positive
direction until it reaches position 1 when 7 =1, and then
it changes direction. It moves in the negative direction
thereafter.

29. (a) The velocity is zero when the tangent line is horizontal,
at approximately t = 2.2,1= 6andt =9.8.

(b) The acceleration is zero at the inflection points,

approximately t =4, r=8 and t=11.

30. (a) The velocity is zero when the tangent line is horizontal,
at approximately r =—-0.2, t=4,and ¢ =12.

(b) The acceleration is zero at the inflection points,

approximately r=1.5, t=5.2, t=8, r=11,andr =13.

31. Some calculators use different logistic regression equations,
SO answers may vary.

@ y= 12655.179
1+12.871¢70-0326¢

(b)

[0, 140] by [-200, 12000]

12655.179
(© y=

112,871 00326050
remarkably close to the 2000 census number of
12,281,054.)

=12,209,870. (This is

(d) The second derivative has a zero at about 78, indicating
that the population was growing fastest in 1898. This
corresponds to the inflection point on the regression
curve.

(e) The regression equation predicts a population limit of
about 12,655,179.

32. Some calculators use different logistic regression equations,
SO answers may vary.

28984386.288

(@) y=—— e
Y 1+49.252¢70851

(b)

[0, 9] by [-3.1 X10% 3.2 X107]
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(¢) The zero of the second derivative is about 4.6, which
puts the fastest growth during 1981. This corresponds to
the inflection point on the regression curve.

(d) The regression curve predicts that cable subscribers will
approach a limit of 28,984,386 + 12,168,450 subscribers
(about 41 million).

33, y=3x—x’+5

y' =3-3x"
Yy’ =-6x
y=0at*l.

y”(=1)>0and y”(1) <0, so there is a local minimum at

(-1, 3) and a local maximum at (1,7).

34, y=x"—80x+100

y =5x*-80
v’ = 20x3
y=0at+2

y”(=2) <0 and y”(2) > 0, so there is a local maximum at
(-2, 228) and a local minimum at (2, —28).

3s. y=x3+3x2—2
y =3x2 +6x
V' =6x+6

y'=0at —2 and 0.
y"(=2)<0,y"(0)>0,
so there is a local maximum at (-2, 2) and a local minimum
at (0, -2).
36. y =3x° = 25x> +60x+20
v =15x* =75x +60
y”= 60x° —150x
y'=0atxland+2.
¥ (-2)<0,y"(-1)>0
y”(1)<0, and y”(2) > 0;
so there are local maxima at (-2, 4) and (1, 58), and there
are local minima at (-1, —18) and (2, 36).

37. y=xe'
Y =(x+1e"
Y =(x+2)e*
y'=0at —1.
y” (=1) >0, so there is a local minimum at (—1,—1/e).
38. y=xe™*
y=(10-x)"
y,’ - (x — 2)e7X
y'=0atl

y” (1) <0, so there is a local maximum at (1, 1/e).

39. y = (x—1D*(x-2)

Intervals x<1 l<x<2 2<x
Sign of y’ - - +
Behavior of y | Decreasing Decreasing Increasing
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39. Continued

Y= =DM+ (x=2)2)(x = 1)
=(x—Di(x—D+2(x—2)]

=(x-1D)Bx-5)
Intervals x<1 l<x<§ §<x
3 3
Sign of y” + - +
. Concave Concave Concave
Behavior of y
up down up

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x = 2.

(¢) There are points of inflection at x =1 and at x = %

40.y=(x—1) (x=2)x—4)

Intervals x<1 1<x<2 2<x<4 4<x
Sign of y” + + - +
Behavior . . . .
£y Increasing | Increasing | Decreasing | Increasing
o

V" = i[(x— D2 (x> —6x+8)]
dx

=(x=1D2Q2x—6)+ (x> —6x+8)(2)(x=1)
=(x=D(x=12x=6)+2(x* —6x+8)]
=(x—1)(@x*=20x+22)

=2(x=1)(2x* =10x+11)

Note that the zeros of y” are x = 1 and

e 1044102 -42x11) _ 10++/12
4

4

+
5_\/5 ~1.630r3.37.

The zeros of y” can also be found graphically, as shown.

v

fflsamw ¥=0
[=3,7]1by [-8,4]

Intervals x<1 1<x<1.63 1.63 <x<3.37 337<x
Si
e - + - +
of y
Behavior | Concave Concave
Concave up | Concave down
of y down up

(a) Local maximum at x =2
(b) Local minimum at x =4

(c¢) Points of inflection at x =1, at x = 1.63, and at x = 3.37.

41. y
y=f)

y=f'(x)
42, ¥

Fy=fn)

v=jf{x)
x

5

¥y=f1(x)

43. No f must have a horizontal tangent at that point, but f could
be increasing (or decreasing), and there would be no local
extremum. For example, if f(x)=x3, f'(0)=0 but there is
no local extremum at x = 0.

44. No. f”(x) could still be positive (or negative) on both sides
of x = ¢, in which case the concavity of the function would
not change at x = ¢. For example, if f(x)=x*, then
f”(0)=0, but f has no inflection point at x = 0.

45. One possible answer:

y
5+
3 i 5"
5L
46. One possible answer:
¥
st
—5 i x
-5t




47. One possible answer:
y
(-2,8) 10

-10

48. One possible answer:

49. (a) [0, 1], [3, 4], and [5.5, 6]
(b) [1, 3] and [4, 5.5]
(¢) Local maxima: x=1,x=4
(if f is continuous at x = 4), and x = 6;
local minima: x=0, x=3, and x=5.5
50. If fis continuous on the interval [0, 3]:
(@) [0, 3]
(b) Nowhere

(¢) Local maximum: x = 3;
local minimum: x =0

51. (a) Absolute maximum at (1, 2);
absolute minimum at (3, -2)

(b) None
(¢) One possible answer:
y
2r y=£(x)
1 -
1 2 3
1k
oL

52. (a) Absolute maximum at (0, 2);
absolute minimum at (2, —-1) and (-2, —-1)

(b) At (1, 0) and (1, 0)
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(¢) One possible answer:

]

2

v = flr)

3
=2 I

(d) Since f'is even, we know f(3) = f(=3). By the continuity
of f, since f(x) <0 when2<x<x< 3, we know

that £(3) <0, and since f(2)=—1and f’(x)>0

when 2 < x <3, we know that f(3) >—1. In summary, we
know that f(3) = f(-3),-1< f(3) <0,

and—-1< f(-3)<0.

X
54. Y
st
4|
3.—
2.
]..
PR M
-1}
=2
=3

55. False. For example, consider f(x) = x*ate=0.

56. True. This is the Second Derivative Test for a local

maximum.

57. A. y=ax3+3)c2 =4x+5 saya=-2

Y =—6x>+6x+4

y'=-12x+6
1
"=0at—
Y 2
Interval x<1/2 x>1/2
Sign of y” + -
Behavior of y Concave up Concave down

58.E.
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59.C. y=x"=5x"+3x+7
y' =5x*—20x>+3
y” =20x% —60x2

y’=0at3
Interval x<3 x>3
Sign of y” - +
Behavior of y Concave down Concave up

3 is an inflection point.

60. A.

61. (a) In exercise 13, a=4 and b=21, so —32 = —%, which is
a

the x-value where the point of inflection occurs. The

3 .
local extrema are at x =-2 and x = —5, which are
symmetric about x = R

(b) In exercise 8,a=-2 and b =6, so —32 =1, whichis
a

the x-value where the point of inflection occurs. The
local extrema are at x = 0 abd x = 2, which are

symmetric about x = 1.

(©) f'(x)=3ax?+2bx+c and
f”(x)=6ax+2b.
The point of inflection will occur where

f7(x)=0, which is at x = _b
3a

If there are local extrema, they will occur at the zeros
of f’(x). Since f’(x) is quadratic, its graph is a parabola
and any zeros will be symmetric about the vertex which
will also be where f”(x) = 0.

(1+ae ") (0) = (c)(—abe ™)
(1+ae™™)?
bx

62.(a) f'(x)=

abce”
(1+ae™")?

abce™ ™

- ™ +a’
so the sign of f’(x) is the same as the sign of abc.
(™ +a)* (ab*ce™ ) — (abce™)2(e™ +a) (be™)
(ebx +a)4
B (€™ + a)(ab*ce™ ) — (abce®™ ) (2be®™)
™ +a)®
ab*ce™ (e —a)

™ +a)’

(b) f"(x)=

1
Since a > 0, this changes sign when x = % due to the

e — a factor in the numerator, and f(x) has a point of
inflection at the location.

63.(a) f'(x)=4ax’ +3bx” +2cx+d
F7(x)=12ax* +6bx +2¢
Since is f”(x) quadratic, it must have 0, 1, or 2 zeros. If
f (x)has 0 or 1 zeros, it will not change sign and the
concavity of f (x) will not change, so there is no point
of inflection. If f”(x) has 2 zeros, it will change sign
twice, and f(x) will have 2 points of inflection.

(b) If f has no points of inflection, then f”(x) has 0 or
1 zeros, so the discriminant of f”(x) is <0. This gives
(6b)* —4(12a)(2c) £0, or 3b? < 8ac. If fhas 2 points of
inflection, then f”(x) has 2 zeros and the inequality is
reversed, so 3b2 > 8ac. In summary, fhas 2 points of
inflection if and only if 3b* > 8ac.

Quick Quiz Sections 4.1-4.3

1. (O f/(x)=5(x-2*(x+3)* +4(x-2°(x+3)* =0
x=—3,—z,2
9
2.0) f/(x)=(x=3)" +2(x=2)(x-3)=0
Fx)=(x=-3)3x-7)=0

x:z,3

3

3.B) x2-9=0
x=13

4@ Lame?+2)-2x
dx
2x

=3—-—-2=0
x“+2
x=12
Intervals —2<x<l1 I<x<2 2<x<4
Sign of y’ - + -
Behavior of Decreasing Increasing Decreasing
y

fhas relative minima at x =1 and x =4 fhas relative

maxima at x = £2

b) f”(x):d( 6x 2)

dx x2+2_

6 12x2
fr0= 555 =0
242 (2+2)7°

x:iﬁ

fhas points of inflection at x = i\/z

(¢) The absolute maximum is
atx=-2and f(x)=3In6+4.



Section 4.4 Modeling and Optimization
(pp. 219-232)

Exploration 1 Constructing Cones
1. The circumference of the base of the cone is the
circumference of the circle of radius 4 minus x, or 87 — x.

Thus, r= 87— x

Y Use the Pythagorean Theorem to find £,
T

and the fomula for the volume of a cone to find V.

2. The expression under the radical must be nonnegative, that

8m— ’
is,16—( x] >0.
2r

Solving this inequality for x gives: 0 < x <167.

[0, 164] by [—10, 40]

3. The circumference of the original circle of radius 4 is 8 7.
Thus, 0 < x <8m.

T~

[0, 8] by [—10, 40]

4. The maximum occurs at about x = 4.61. The maximum
volume is about V = 25.80.

dv _om dr @ dh

5. Start with

dx 3 de 3 ax

Compute dr and @, substitute these values in
dx dx
dv
Ev
L 86—V _
3

set % =0, and solve for x to obtain

4.61.

12873

27

Then V= =25.80.

Quick Review 4.4
1.y =3x> —12x+12=3(x - 2)*
Since y" >0 forall x (and y” >0 forx # 2), y is increasing
on (—oo,oo) and there are no local extrema.
2. Y =6x2+6x—12=6(x+2)x—1)
Yy =12x+6

The critical points occur at x =-2 orx =1, since y’=0 at
these points. Since y”(-2)=—18 <0, the graph has a local
maximum at x = —2. Since y”(1) =18 > 0, the graph has a

10.

15,1 2
V=—nrh=—n(5)"8)=
3% 3()()
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local minimum at x = 1. In summary, there is a local
maximum at (—2, 17) and a local minimum at (1, —10).

200 4
——cm
3

. V=nr?h=1000

SA =27rh+ 27mr? =600

Solving the volume equation for & gives =
r

Substituting into the surface area equation gives

2000 +27r? =600. Solving graphically, we have
-

r=-11.14,r =4.01, orr = 7.13. Discarding the negative

value and using A = to find the corresponding values

7tr2

of h, the two possibilities for the dimensions of the
cylinder are:

r=4.01cmand 2 =19.82cm, or,

r=7.13cmand h=6.26cm.

. Since y =sinx is an odd function, sin (—o;) = —sin .
. Since y = cosx is an even function, cos (—o) = cos .

. sin(zr — o) = sin 7T cos o — cos T sin &

=0coso—(—=1)sinx
=sina

. COS(T — 0¢) = COS T COS O — Sin T sin

=(=1)cosax+0sinx
=—coso

X +yt =4 andy=\/§x

x>+ (\/gx)2 =4

2432 =4
4x* =4
x==1

Since y= \/gx, the solution are:

x=1and y=\/§, or, x=-1 andyz—\/g.
In ordered pair notation, the solutions are

(1,43) and (—1,-/3).

2 2
x—+y—=landy:x+3
49

£+(x+3)2:l
4 9

9x% +4(x+3)> =36
9x% +4x> +24x+36=36
13x2+24x=0
x(13x+24)=0
24

x=0orx=——
13
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10. Continued

Since y=x+3, the solutions are:

24 1
x=0andy=3, or,xz——andy—s.
13 13

In ordered pair notation, the solution are (0, 3) and

2415
1313 )

Section 4.4 Exercises

1. Represent the numbers by x and 20 — x, where 0 < x <20.

(a) The sum of the squares is given by
f(x)=x?+(20-x)> =2x2 —40x +400. Then
f’(x) =4x—40. The critical point and endpoints occur
at x=0,x=10, and x =20. Then ' (0) =400, £ (10) =
200, and f (20) = 400. The sum of the squares is as large
as possible for the numbers 0 and 20, and is as small as
possible for the numbers 10 and 10.

Graphical support:

N

Hiniraur
#=1

i L ] e

[0, 20] by [0, 450]
(b) The sum of one number plus the square root of the other
is given by g(x)=x++20-x. Then
1

’ =1_7
EEN T

2420-x =1, s020 — x= i andx:%. Testing the

. The critical point occurs when

endpoints and critical point, we find g(0)=+20 =

4.47, g(?) = % =20.25, and g(20) =20. The sum is

as large as possible when the numbers are

79 1 .19 1 .
— and — | summing—+,/— |, and is as small as
4 4 4

possible when the numbers are 0 and 20
(summing 0 + \/% ).
Graphical support:

/

Haxirum
#=19.75 ¥=20.25

[0, 20] by [~ 10, 25]

2. Let x and y represent the legs of the triangle, and note that

0<x<5.Then x2+y2= 25, so y=\/25—x2

(since y > 0). The areais A= %xy = %x\j 25-x2,

) @:lx;(—Zx)+i\/25—x2
dx 2 9\25- 2 2
25-2x2

N

The critical point occurs when 25— 2x* =0, which means

5
x =—=, (since x > 0). This value corresponds to the largest

V2
dA

possible area, since % >0forO0<x< S and <—<0

2 dx

fori<x <5.When xzi, we have

V2 V2

2 2
5 5 1 (5 25
A S
J2 J2 2 2\ 2 4
. . 25 2
Thus, the largest possible area is Icm , and the

5 5
dimensions (legs) are —=cm by —=cm.
vV2 V2

Graphical support:

Haximur
#=3.5356339 VY=4.25

[0, 51by [-2,7]

. Let x represent the length of the rectangle in inches (x > 0).

Then the width is 16 and the perimeter is
X

P(x)=2(x+l6)=2x+32.
x

X
26 ~16)
X
occurs at x =4. Since P’(x) <0 forO<x <4 and
P’(x)> 0 for x > 4, this critical point corresponds to the
minimum perimeter. The smallest possible perimeter is

P(4)=16in., and the rectangle’s dimensions are 4 in.
by 4 in.

Since P'(x)=2- 32x72 = this critical point

Graphical support:

Hiniraurm
H=Y

LT ) (o | e

[0, 20] by [0, 40]



. Let x represent the length of the rectangle in meters
(0 < x <4). Then the width is 4 — x and the area is
A(x)=x(4—x)=4x—x2. Since A’(x) =4 —2x, the critical
point occurs at x = 2. Since A’(x)>0 for0 <x <2
and A’(x) <0 for 2 < x <4, this critical point corresponds
to the maximum area. The rectangle with the largest area
measures 2 m by 4 — 2 =2m, so it is a square.

Graphical support:

Haximum
= =Yy

[0, 4] by [—1.5, 5]

. (a) The equation of line AB is y=—x+1, so the

y-coordinate of P is —x + 1.

(b) A(x)=2x(1-x)

(c) Since A’(x)= di(Zx —2x2)=2—4x, the critical point
X
1 . , 1
occurs atsz .Since A’(x) >0forO<x< > and

A’(x) <0for — <x< 1, this critical point corresponds

to the maximum area. The largest possible area is

1 1 . . .
A(2) = > square unit, and the dimensions of the

1
rectangle are > unit by 1 unit.

Graphical support:

Maxirmum
A=t ¥=.5

[0, 11 by [-0.5,1]

. If the upper right vertex of the rectangle is located at
(x, 12— xz) forO<x< \/E, then the rectangle’s
dimensions are 2x by 12— x* and the area is
A(x)=2x(12-x?)=24x-2x>. Then
A’(x)=24-6x> =6(4—x?), so the critical point
(forO<x < \/ﬁ ) occurs at x = 2. Since
A’'(x)>0forO0<x<2and A’(x) <0 for2< x < \/E, this

critical point corresponds to the maximum area. The largest
possible area is A(2) =32, and the dimensions are

4bys.
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Graphical support:

Haximum
H=2 y=32

[0, V12] by [ 10, 40

. Let x be the side length of the cut-out square (0 < x < 4).

Then the base measures 8 — 2x in. by 15 — 2x in., and the
volume is

V(x) = x(8—=2x)(15-2x) = 4x> — 46x* +120x. Then
V/(x)=12x> =92x +120 = 4(3x = 5)(x — 6).

Then the critical point (in O < x < 4) occurs at x = % Since

V’(x)>0for0<x<§ and V'(x)<0 for§<x<4,

the critical point corresponds to the maximum volume.
2450

~90.74in’, and the
27

The maximum volume is V(Z)

dimensions are %in. by % in. by 33 in.

Graphical support:

Haximura
#=1.6666667 ¥=90.740741
[0, 4] by [—25, 100]

8. Note that the values @ and b must satisfy a*+b*=20% and

50 b=1400—a*. Then the area is given by

A =%ab=%a 400 —a* for 0 <a <20, and

a_ la[lj(—Za)+1\/400—a2

da 2\ 24400 -a? 2

_ —a’+(400-a*)  200-a’
Wa00-a®  V400- a2

. The critical point occurs

A
when a® = 200. Since fl— >0 for0 <a<+200 and
a

Z—A <0 for v200 < a < 20, this critical point corresponds to
a

the maximum area. Furthermore, if a=+/200 then

b=+400-a* =/ 200, so the maximum area occurs when

a=bh.
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8. Continued
Graphical support:

Haxiraum
H=14.142136 ¥=100

[0, 20] by [—30, 110]

9. Let x be the length in meters of each side that adjoins the
river. Then the side parallel to the river measures 800 — 2x
meters and the area is

A(x) = x(800 — 2x) = 800x — 2x> for 0 < x < 400.
Therefore, A’(x)=2800—4x and the critical point occurs at
x =200. Since A’(x)>0 for 0 < x <200 and

A’(x) <0 for 200 < x <400, the critical point corresponds
to the maximum area. The largest possible area is

A(200) = 80,000 m? and the dimensions are 200 m
(perpendicular to the river) by 400 m (parallel to the river).

Graphical support:
Haxiraura
#=200 ¥=B0000

[0, 400] by [—25,000, 90,000]

10. If the subdividing fence measures x meters, then the pea

21
patch measures x m by 216 m and the amount of fence
X

21
needed is f(x)=3x+ 2—6 =3x+432x"". Then
x

f(x)=3- 432x7? and the critical point (for x > 0) occurs
at x=12. Since f’(x)<0 for0<x <12 and
f/(x) >0 forx > 12, the critical point corresponds to the

minimum total length of fence. The pea patch will measure
12 m by 18 m (with a 12-m divider), and the total amount
of fence needed is f(12) =72m.

Graphical support:

Minipyury
L ) o ——

[0, 40] by [0, 250]

11. (a) Let x be the length in feet of each side of the square
base. Then the height is @ ft and the surface area (not
x

including the open top) is

S(x)= X+ 4x(5020) =x2+2000x". Therefore,
X

2(x* —1000)

X
point occurs at x = 10. Since S’(x)<0 for0<x <10

§’(x)=2x—2000x"2 = and the critical

and S’(x) >0 forx > 10, the critical point corresponds
to the minimum amount of steel used. The dimensions
should be 10 ft by 10 ft by 5 ft, where the height is 5 ft.

(b) Assume that the weight is minimized when the total
area of the bottom and the four sides is minimized.

12. (a) Note that xzy =1125,s0y = g Then
X

¢ =5(x* +4xy)+10xy
=5x%+30xy

=542 +30x(1135)

X
=5x%+33,750x7"

10(x> —3375)
2

LT 33,750x7% =
dx X

The critical point occurs at x = 15. Since % <0 for
x

O<x<15and % >0 forx > 15, the critical point
X
corresponds to the minimum cost. The values of x and y
arex=15ftand y =5 ft.
(b) The material for the tank costs 5 dollars/sq ft and the
excavation charge is 10 dollars for each square foot of
the cross-sectional area of one wall of the hole.

13. Let x be the height in inches of the printed area. Then the

width of the printed area is 50 in. and the overall
X

dimensions are x + 8 in. by $+ 4 in. The amount of paper
X
used is A(x)= (x+8)(50+4) = 4x+82+@ in”. Then
X X
4(x* —100)
2

X
(for x > 0) occurs at x = 10. Since A’(x) <0 for 0 <x <10

A'(x)=4- 400x72 = and the critical point

and A’(x) >0 forx > 10, the critical point corresponds to

the minimum amount of paper. Using x + 8 and 0 +4 for
X
x =10, the overall dimensions are 18 in. high by 9 in. wide.

14. (a) s(r)=—-161>+96+112
v(t)=s"(t) =-32t+96
At t =0, the velocity is v(0) = 96 ft/sec.
(b) The maximum height occurs when v(¢) = 0, when ¢ = 3.

The maximum height is s(3) = 256 ft and it occurs at
t=3sec.



14. Continued

(c) Note that s(t) = 1612 +96t+112 = —16(t+1)(—"7),

sos=0att=-1or¢="7. Choosing the positive value,
of ¢, the velocity when s =0 is v(7) = —128 ft/sec.

15. We assume that a and b are held constant. Then
1 1
A(0) = Eab sin @ and A’(6) = Eab cos 6. The critical point
(for 0 <6 < 7) occurs at 0 = % Since A’(6) >0

for0<9<§ andA’(9)0f0r§<9<7r,
the critical point corresponds to the maximum area. The

angle that maximizes the triangle’s area is 6 = %(or 90°).

16. Let the can have radius r cm and height # cm. Then

rlh= 1000, s0 h = 1000. The area of material used is
r
2 A
A=nr? +2mrh = 2 + 2000 , 50 A _ o rr—200012
r dr
3 p—
= w The critical point occurs at
r

r=3 1000 =107""* cm. Since aA <0
T dr

-1/3 173

A
and d—> 0 forr>10x
dr
point corresponds to the least amount of material used and

hence the lightest possible can. The dimensions are
r=107""* ~6.83cmand h = 107"* ~ 6.83cm. In Example

2, because of the top of the can, the “best” design is less big
around and taller.

forO<r<10m , the critical

17. Note that 7r*h = 1000, s0 h = 10020. Then
nr

2
A=8r+2mrh=8r2 + 2000 , SO
r

16(+> —125)

3 . The critical point

9 16r-2000r7 =
dr r

occurs at r=3125=>5cm. Since Z—A<0 forO<r<5and
r

A
—Z >0 for r> 5, the critical point corresponds to the least
B

amount of aluminium used or wasted and hence the most

. . . 40
economical can. The dimensions are r=5 cm and h=—,
/4

. . 8
so the ratio of A to ris — to 1.
T
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X .
in, so the

18. (a) The base measures 10 — 2x in. by

volume formula is
x(10-2x)15-2x)
2

(b) We require x > 0, 2x < 10, and 2x < 15. Combining
these requirements, the domain is the interval (0, 5).

V(x)= =2x>—25x% +75x.

[0, 51 by [—20, 80]

(c)

|§g§55’s"1"§?39 ¥=66.019118

[0, 5] by [—20, 80]
The maximum volume is approximately 66.02
when x = 1.96 in.

@ V’'(x)=6x>-50x+75

The critical point occurs when V’(x) = 0, at

= 50 £+/(=50)% — 4(6X75) _50£+4700 25+ 5J7
2(6) 12 6
thatis, x = 1.96 or x = 6.37. We discard the larger value

because it is not in the domain. Since V”(x) = 12x — 50,

s

which is negative when x = 1.96, the critical point
corresponds to the maximum volume. The maximum

25-5J7
6

volume occurs when x = =~1.96, which

confirms the result in (c).

19. (a) The “sides” of the suitcase will measure 24 — 2x in. by
18 — 2x in. and will be 2x in. apart, so the volume
formula is
V(x)=2x(24-2x)18—-2x) = 8x> —168x> +864.x.

(b) We require x >0,2x <18, and 2x <24. Combining
these requirements, the domain is the interval (0, 9).

[0, 9] by [-400, 1600]
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19. Continued
(©

Haxirura

#=3.3844487 Y=1308.8547
[0, 9] by [—400, 1600]
The maximum volume is approximately 1309.95
when x = 3.39 in.

(d) V'(x) = 24x> —336x + 864 = 24(x* — 14x + 36)

The critical point is at

4+\/( 14)? — 4(1)(36) 14+\/— 7+, that

2(1)

is, x=3.39or x =10.61. We discard the larger value
because it is not in the domain. Since V”(x) =

24(2x —14), which is negative when x = 3.39, the critical
point corresponds to the maximum volume. The
maximum value occurs at x =7 — \/E =3.39, which
confirms the results in (c).

(e) 8x3 —168x2 +864x=1120
8(x3-21x2+108x—-140)=0
8(x—2)(x-5)(x—-14)=0
Since 14 is not in the domain, the possible values of

xare x=2in.orx=>51in.

(f) The dimensions of the resulting box are 2x in.,
(24 — 2x) in., and (18 — 2x) in. Each of these
measurements must be positive, so that gives the
domain of (0, 9)

20.

F 6 mi
—=x—t

T 7
I
]

2 mi

6-x

/\
V4 + x2 miles

Jane
Let x be the distance from the point on the shoreline nearest
Jane’s boat to the point where she lands her boat. Then she

needs to row v4+x* mi at 2 mph and walk 6 — x mi at
5 mph. The total amount of time to reach the village is

f)= 4+’ 6 o hours (0 <x<6). Then
X 1
f(x)—* (2x) - -
22\/4+x Wa+x? 3

Solving f’(x)=0, we have:

oox 1
Wa+x? S
5x=2v4+x>
25x% =4(4+x%)
21x%2 =16
x= +7

=

21.

22.

23.

24,

We discard the negative value of x because it is not in the
domain. Checking the endpoints and critical point, we have

F0)=22, f(\/%) ~2.12,and f(6) ~3.16. Jane should

land her boat % ~(.87 miles down the shoreline from
21

the point nearest her boat.

If the upper right vertex of the rectangle is located at
(x, 4 cos 0.5x) for 0 < x <, then the rectangle has width

2x and height 4 cos 0.5x, so the area is A(x) = 8x cos 0.5x.
Then A’(x) = 8 x(—0.5 sin 0.5x) + 8(cos 0.5x)(1)

=—4xsin 0.5x + 8 cos 0.5x.
Solving A’(x) graphically for 0 < x < 7, we find that

x = 1.72. Evaluating 2x and 4 cos 0.5x for x = 1.72, the
dimensions of the rectangle are approximately 3.44 (width)
by 2.61 (height), and the maximum area is approximately
8.98.

Let the radius of the cylinder be » cm, 0 < r < 10. Then the
height is 24/100— r* and the volume is

V(r)=27r’\100 - r>cm?. Then
1
V/(r)=2mr?| ———— [(=2r) + (273100 = %) (2r)
[ 241002 J

=27 +4mr(100—r?)

V10072

_ 27r(200 - 3r?)

V10072

The critical point for 0 < r < 10 occurs at

=, 200 —10\/7 Since V’(r) >0 for 0<r<10\/§ and

V’(r) >0 for 10\/; <r <10, the critical point corresponds

to the maximum volume. The dimensions are

r= 10\/§z8.16 cm and h=§:11.55 cm, and the

Ng)

40007 _ 241840 em®,

volume is
33

Set r’(x)=c"(x): 4x7V2
value is x = 1, so profit is maximized at a production level
of 1000 units. Note that (r—c)"(x)=-2(x) V> ~4<0 for

all positive x, so the Second Derivative Test confirms the
Maximum.

= 4x. The only positive critical

Set r'(x) = c’(x): 2x/ (x> +1)* = (x—1)*. We solve this
equation grpahically to find that x = 0.294. The graph of
y=r(x) — c(x) shows a minimum at x =0.294 and a
maximum at x = 1.525, so profit is maximized at a

production level of about 1,525 units.



25.

26.

27.

28.

Set ¢’(x)= €8 342 905430 = x* —10x+30. The only
X

positive solution is x = 5, so average cost is minimized at a

production level of 5000 units. Note that
4 (e
dx*\ x

Derivative Test Confirms the minimum.

) =2>0 for all positive x, so the Second

Set ¢’(x)=c(x)/x:xe* +e* —4x =¢e" —2x. The only

positive solution is x = In 2, so average cost is minimized at

a production level of 1000 In 2, which is about 693 units.

4>
Note that z(c(x)) =e" >0 for all positive x, so the
dx X

Second Derivative Test confirms the minimum.
Revenue: r(x) =[200—2(x —50) Jx = —2x> +300x
Cost: ¢ (x) =6000+32x
Profit: p(x) =r(x)—c(x)
=—2x7 +268x - 6000,50 < x <80
Since p’(x) = —4x+ 268 = —4(x —67), the critical point

occurs at x = 67. This value represents the maximum
because p” (x) =—4, which is negative for all x in the

domain. The maximum profit occurs if 67 people go on the

tour.

@ ff()=x(-eH)+e " (D=e"(1-x)
The critical point occurs at x = 1. Since f”(x) > 0 for
0<x<1andf'(x) <0 for x> 1, the critical point
corresponds to the maximum value of f. The absolute
maximum of foccurs at x = 1.

(b) To find the values of b, use grapher techniques to

solve xe™* =0.1e701,

xe ™ =0.2¢792 and so on. To
find the values of A, calculate (b — a) ae?, using the

unrounded values of b. (Use the list features of the

grapher in order to keep track of the unrounded values

for part (d).)

a b A
0.1 | 371 | 0.33
02 | 2.86 | 0.44
03 | 2.36 | 0.46
04 | 2.02 | 043
0.5 | 1.76 | 0.38
0.6 | 1.55 | 0.31
0.7 | 1.38 | 0.23
08 | 1.23 | 0.15
09 | 1.11 | 0.08
1.0 | 1.00 | 0.00

(c)
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[0, 1.1] by [-0.2, 0.6]

(d) Quadratic:

A=-091a> +0.54a+0.34

fu)u‘\&\

[-0.5, 1.5] by [-0.2, 0.6]

Cubic:
A=174a° —3.78a% +1.86a+0.19

f‘\ J

[-0.5, 1.5] by [-0.2, 0.6]

Quartic:
~-1.924* +5.96a° - 6.87a> +2.71a+0.12

N

! A

[-0.5, 1.5] by [-0.2, 0.6]

(e) Quadratic:

AN

Haximur
H=.20574562 Y=.41555643

[-0.5, 1.5] by [—0.2, 0.6]

According to the quadratic regression equation, the
maximum area occurs at a = 0.30 and is approximately
0.42.

Cubic:

(\_J

Haxirur
#=.2A45H094 Y= ME24BNM3Y

[~0.5, 1.5] by [—0.2, 0.6]

According to the cubic regression equation, the
maxiumu area occurs at @ = 0.31 and is approximately
0.45.
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28.

29.

30.

31.

32.

Continued
Quartic:

AN

Ma ):il?l{lh'l
W=.2974123y Y=4S9BEEEZ
[—0.5, 1.5] by [—0.2, 0.6]

According to the quartic regression equation the
maximum area occurs at a = 0.30 and is approximately
0.46.

(a) f’(x) is a quadratic polynominal, and as such it can
have 0, 1, or 2 zeros. If it has O or 1 zeros, then its sign
never changes, so f(x) has no local extrema.

If f’(x) has 2 zeros, then its sign changes twice, and
f(x) has 2 local extrema at those points.
(b) Possible answers:
No local extrema: y = x?;
2 local extrema: y = x°=3x

Let x be the length in inches of each edge of the square end,
and let y be the length of the box. Then we require
4x+y<108. Since our goal is to maximize volume, we
assume 4x +y = 108 and so y = 108 — 4x. The volume is
V(x)=x2(108—4x)=108x2 —4x>, where 0 <x < 27.
Then V' =216x —12x? = —12x(x — 18), so the critical
point occurs at x = 18 in. Since V’(x)>0 for0<x <18

and V’(x) <0 for 18 < x <27, the critical point corresponds
to the maximum volume. The dimensions of the box with
the largest possible volume are 18 in. by 18 in. by 36 in.

Since 2x + 2y =36, we know that y = 18 —x. In part (a),
the radius is ZL and the height is 18 — x, and so the
/4

volume is given by
X ’ 1

arth=n| —| 18-x)=—x>(18-x).
2 4r

In part (b), the radius is and the height is 18 — x, and so the
volume is given by 7r’h=7x*(18—x). Thus, each
problem requires us to find the value of x that maximizes
f(x)=x?(18—=x) in the interval 0 < x < 18, so the two
problems have the same answer.

To solve either problem, note that f(x) =182 — x> and so
f/(x)=36x—3x% =-3x(x—12). The critical point occursat
x=12.Since f’(x)>0 forO<x<12and f'(x)<0

for 12 < x <18, the critical point corresponds to the
maximum value of f (x). To maximize the volume in either
part (a) or (b), letx=12cm and y =6 cm.

Note that h> +r% =3 and so r =+3—h%. Then the volume

is given by V = %rzh - %(3—h2)h = nh—%fﬁ for

0<h<+/3,and so Z—Z:n’—nhz = (1-h?). The critical

3. f'(x)=2x— ax?= 2¢—a

point (for & > 0) occurs at h = 1. Since Z—Z> 0 forO<h<1

and Z—Z <0 for 1<h< \/g , the critical point corresponds

to the maximum volume. The cone of greatest volume has

2
radius \/5 m, height 1 m, and volume ?ﬂm3 .

33. (a) We require f(x) to have a critical point at x = 2. Since

f/(x)=2x—ax?, wehave f'(2)=4 —% and so our

requirement is that 4 — % =0. Therefore, a =16. To

verify that the critical point corresponds to a local
minimum, note that we now have f’(x)=2x-— 16x72
andso f”(x)=2+ 32x73, s0 f”(2)=6, which is
positive as expected. So, use a =—16.

(b) We require f”(1)=0. Since f”=2+2ax", we have
f”(1)=2+2a, so our requirement is that 2 +2a = 0.
Therefore, a = —1. To verify that x =1 is in fact an
inflection point, note that we now have
f”(x)=2-2x", which is negative for 0 < x < 1 and
positive for x > 1. Therefore, the graph of fis concave
down in the interval (0, 1) and concave up in the
interval (1,e0), So,usea=-1.

a . .
5> S0 the only sign change in
X

1/3
f’(x) occurs at x = (;) , where the sign changes from

negative to positive. This means there is a local minimum at
that point, and there are local maxima.

35. (a) Note that f”(x) = 3x> +2ax+b. We require f’(-1)=0

and f’(3)=0, which give3-2a + b =0and

27 + 6a + b = 0. Substracting the first equation from the
second, we have 24 + 8a = 0 and so a = —3. Substituting
into the first equation, we have 9 + b= 0, so b =-9.
Therefore, our equation for f(x) isf(x)=

x3—3x2 —9x. To verify that we have a local maximum
at x =—1 and a local minimum at x = 3, note that
f/(x)=3x2-6x—9 =3(x+1)x—3), which is positive
for x < —1, negative for —1 < x < 3, and positive for x >
3.So,use a=-3 and b =-9.

(b) Note that f’(x)=3x?+2ax+b and f”(x)=6x+2a.
We require f’(4)=0 and f”(1)=0, which give
48 + 8a+ b =0and 6+ 2a = 0. By the second
equation, a = -3, and so the first equation becomes
48 — 24 +b = 0. Thus b = -24. To verify that we have a
local minimum at x = 4, and an inflection point ar x =1,
note that we now have f”(x)=6x—-6. Since f”
changes sign at x = 1 and is positive at x = 4, the desired
conditions are satisfied. So, use a =—3 and b = —24.



36. Refer to the illustration in the problem statement. Since

X2+ y2 =9, we have x=+/9- y2. Then the volume of the

cone is given by
L o 1 5
V=—nr'h=—rm +3
R =g »y+3)
1
=370+
=2y =3y +oy+2m),
for -3<y<3.

Thus av = E(—3y2 —-6y+9)= —71'(y2 +2y-3)
dy 3

=—-m(y+3)(y—1), so the critical point in the

av
interval (-3, 3) is y = 1. Since ' >0 for -3<y<1 and
y

av
e <0 for 1 <y < 3, the critical point does correspond to
y

2
the maximum value, which is V(1) = 3T” cubic units.

37. (a) Note that w” +d> =122, sod =+144—w?. Then we

may write S = kwd> = kw(144 —w?) = 144kw — kw’
ds

for0<w<12, so —== 144k —3kw? = =3k(w* — 48).
w

The critical point (for 0 <w < 12) occurs at

w:mzélx/g. Since j—S>0 for 0<w<4\/§ and
w

j—S <0 for 4\/5 <w <12, the critical point
w

corresponds to the maximum strength. The dimensions
are 4\/5 in. wide by 4\/6 in. deep.

(b)

[0, 12] by [~ 100, 800]

The graph of § =144w—w? is shown. The maximum
strength shown in the graph occurs at w = 4\/3 =6.9,

which agrees with the answer to part (a).

(c)

[0, 12] by [—100, 800]
The graph of S =d*~/144—d? is shown. The
maximum strength shown in the graph occurs at

d= 4\/8 = 9.8, which agrees with the answer to part

(a), and its value is the same as the maximum value
found in part (b), as expected.
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Changing the value of k changes the maximum strength,
but not the dimensions of the strongest beam. The
graphs for different values of k look the same except
that the vertical scale is different.

38. (a) Note that w? +d” =12%, s0d =144 — w”. Then we

may write S = de’; — kW(l44— W2)3/2, S0
das

=kwe g(144— wH2 (22w + k(144 — w2 (1)
dw 2

= (kv 144 — w?)(=3w? +144 - w?)
= (—4k\144 =22 )(w? —36)

The critical point (for 0 < w < 12) occurs at w = 6. Since

§>0 for O<w<6and£<0for6<w<12, the
dw dw

critical point corresponds to the maximum stiffness.

The dimensions are 6 in. wide by 6\/5 in. deep.

(b)

[0, 12] by [-2000, 8000]

The graph of S =w(144—w?)*? is shown. The
maximum stiffness shown in the graph occurs at w = 6,
which agrees with the answer to part (a).

(c)

[0, 12] by [-2000, 8000]

The graph of S =d>\144—d* is shown. The
maximum stiffness shown in the graph occurs at

d= 6\/5 =~10.4 agrees with the answer to part (a), and
its value is the same as the maximum value found in
part (b), as expected.

Changing the value of k changes the maximum
stiffness, but not the dimensions of the stiffest beam.
The graphs for different values of &k look the same
except that the vertical scale is different.

39. (@) v(t)=s"(t)=—10msin 7t

The speed at time 7 is 107r‘sin m\. The maximum speed

1=

N | =

is 10rcm/sec and it occurs at ¢ =

7 . . .
t= Esec. The position at these times is s =0 cm

(rest position), and the acceleration a(t)=v'(f) =

—107% cosmt is 0 cm/sec? at these times.
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39. Continued

(b) Since a(t)=-1072cosnt, the greatest magnitude of
the acceleration occurs at t=0, t=1,t=2, t =3,
and t = 4. At these times, the position of the cart is
either s =—10cmors =10cm, and the speed of the cart
is 0 cm/sec.

40. Since % =—2sint+2cost, the largest magnitude of the
t

current occurs when —2 sin r+ 2 cos ¢t = 0, or sin ¢ = cos t.

Squaring both sides gives sin? t = cos” ¢, and we know that
-2 2, _ 2o 1 .
sin“t+cos“t=1, so sin“fr=cos" t= 5 Thus the possible

n 3n 5S¢
values of rare —, —, —
4 4 4

extraneous solutions, the solutions of sint = cost are

, and so on. Eliminating

T . .
t= Z+ kr for integers k, and at these times

‘i‘ = ‘ZCOSI + 2sin t‘ = 2\/5. The peak current is 2\/5 amps.

41. The square of the distance is
3Y 9
D(x) =(x—2) +(Wx+0)? =2 x4,

soD’(x)=2x—2 and the critical point occurs at x = 1.
Since D’(x) <0 for x <land D’(x)> 0 for x > 1, the critical

point corresponds to the minimum distance. The minimum
. . 5
distance is 4/ D(1) = g

42. Calculus method:
The square of the distance from the point (1, \/g) to

(x,N16—x?) is given by
D(x)=(x—1> +(\16-x* —3)

=x2—2x+1+16—x> —2y48-3x% +3
=-2x+20—2v48—3x%. Then

2
24/48 —3x2

Solving D’(x)=0, we have:

6x = 2y48—3x2

36x2 = 4(48—3x?%)

6x

NITEE

D'(x)=—-2— (~6x)=—2+

9x? = 48—3x?
12x% =48
x=%2

We discard x = -2 as an extraneous solution, leaving x = 2.
Since D’(x)<0for —4 <x <2 and D’(x) >0 for 2<x <4,

the critical point corresponds to the minimum distance. The
minimum distance is | D(2) = 2.

Geometry method:
The semicircle is centered at the origin and has radius 4.

The distance from the origin to (1,\/3) is \/12 + (\/5)2 =2.
The shortest distance from the point to the semicircle is the
distance along the radius containing the point (1,\/5). That
distance is 4 -2 =2.

43. No. Since f(x) is a quadratic function and the coefficient

of x% is positive, it has an absolute minimum at the point
13
where f’(x)=2x-1=0, and the point is (2, 4).

44. (a) Because f(x) is periodic with period 2.

(b) No. Since f(x) is continuous on [0, 27], its absolute
minimum occurs at a critical point or endpoint.
Find the critical points in [0, 27]:
f/(x)=—4sinx—2sin2x= 0

—4sinx—4sinxcosx = 0
—4(sinx)(1+ cosx) 0
sinx = Qorcosx=-1
x =0,m2m

The critical points (and endpoints) are (0, 8), (r,0),
and (27, 8). Thus, f(x) has an absolute minimum at
(r,0) and it is never negative.
45. (a) 2sint = sin2t
2sint = 2sintcost
2(sint)(1—cost) = 0
sint = Qorcost=1

t = krxr, where k is an integer
The masses pass each other whenever ¢ is an integer
multiple of 7 seconds.

(b) The vertical distance between the objects is the absolute
value of f(x)=sin2¢—2sint.
Find the critical points in [0, 27]:
f/(x)=2co0s2t—2cost = 0

2(2cos2t—1)—2cost =0
2(2coszt—cost—1) =0
2(2cost+1)cost—1) = 0
1

cost =——orcost=1
2

=2l,4l,0,27r

3 3

The critical points (and endpoints) are (0, 0),
[27: 33 ] ( 4 33
) ",

37 2 J| 3

s } and (27,0)

. . 2
The distance is greatest when ¢ = Y sec and when

4r . . . 3J3
t= ? sec. The distance at those times is 7 meters.



46. (a) sint= sin(t + 7;)

. . T . T
sint = sinfcos—+ costsin—
3 3
. 1. 3
sint = —sint+——cost
2 2

. 3
—SInt = —CoSt
2 2

tant =~/3

. . T
Solving for #, the particles meet at ¢ = 3 sec and at

4
t=— sec.
3
(b) The distance between the particles is the absolute value
of f(t)=sin t+§ —sint = ﬁcost—lsint. Find the
3 2 2
critical points in [0, 27]:
V3 1
‘(t)=———sint——cost =0
@ 2 2
N
———sint = —cost
2 2
1

tant =——=

NG

The solutions are ¢ = %t and = “?ﬂ so the critical

points are at (56”’ - 1) and (1::, 1), and the interval
endpoints are at (O, \f} and [277:, \/j] The particles

11
are farthest apart at ¢ = 5?71' sec and at ¢ = ?ﬂsec, and

the maximum distance between the particles is 1 m.

(c) We need to maximize f’(¢), so we solve f”(¢)=0.
V3 i
"(t)=———cost+—sint=0
f@ 5 5
. 3
—sint =-——cost
2 2
This is the same equation we solved in part (a), so the

. T 4r
solutions are ¢ = gsec and 1 = 7sec.

For the function y = f’(¢), the critical points occur at

(Z, - 1) and (4;, 1), and the interval endpoints are

at O,—l and 271?,—1.
2 2

Thus,

4
f’(z)\ is maximized at 1= % and 7 = ?ﬂ But

these are the instants when the particles pass each other,
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so the graph of y= ‘ f (t)‘ has corners at these points

d . . .
and d—‘ f (t)‘ is undefined at these instants. We cannot
t

say that the distance is changing the fastest at any
particular instant, but we can say that near

T 4 . . .
t=— ort=— the distance is changing faster than at

any other time in the interval.

47. The trapezoid has height (cos6)ft and the trapezoid bases

measure 1 ft and (1+2sin0)ft, so the volume is given by
V(o) = %(cos 0)(1+1+2sin0)(20)
=20(cos ) (1+sin6).
Find the critical points for 0 <0 < % :
V’(0) = 20(cos6) (cos ) +20(1+sin ) (—sinf) = 0

20cos> 0 —20sin6—20sin’ =0
20(1-sin® 8)—20sin6—20sin> 6 =0
—20(2sin®> O +sin@—1=0
—20(2sin@—1)sin6+1)=0

sinezé orsinf = —1

o="
6
The critical point is at (76[’ 15\/5 ) Since

V'(0)>0 for0S9<% and V'(6)<0 for%<9<%, the
critical point corresponds to the maximum possible trough

. - /4
volume. The volume is maximized when 6 = g

48.(a) D ¢

A P B

Sketch segment RS as shown, and let y be the length of segment
OR. Note that PB = 8.5 — x, and so

OB =+/x> = (8.5-x)* =/8.5(2x—8.5).

Also note that triangles QRS and PQB are similar.

OR _PQ
RS OB
y X

85 35(2x—85)
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48. Continued
2 2

X
@ )@ 8.5(2x—8.5)
» 8.5x7
C2x-85
?=x2+y?
2oy 8.5x2
2x-8.5
e x2(2x-8.5)+8.5x>
2x-8.5
2 253
2x-85
2
(b) Note that x >4.25, and let f(x)= I’ = 72 . Since
y <11, the approximate domain of fis 5.20 <x <8.5.
Then
P = (2x—8.5X6x3) = (2x°X2) _ x2(8x=51)
(2x-8.5) (2x-8.5)
For x>5.20, the critical point occurs at
51

X= Y =6.3751n., and this corresponds to a minimum

value of f(x) because f’(x) <0 for5.20 < x <6.375
and f’(x) >0 forx > 6.375. Therefore, the value of x
that minimizes ° is x = 6.375 in.

(¢) The minimum value of L is

3
_26375)° =~11.04 in.
2(6.375)-8.5
49. Since R=M"> E—M £M2 —1M3 we have
2 3 2 3

R
Z—M:CM—MZ. Let f(M)=CM — M?. Then

f/(M)=C-2M, and the critical point for f occurs at

C . .
M = —. This value corresponds to a maximum because

f(M)>0 forM<% and f'(M) <0 forM>%. The value

of M that maximizes d—R isM = g
am 2

50. The profit is given by
P(x)=(nXx—c) = a+b(100-x)x—c)
= bx” +(100+¢)bx +(a—100bc).
Then P’(x)=-2bx+(100+c)b
=b(100+c—2x).
100+c¢

. . c .
The critical point occurs at x = =50+ > and this

value corresponds to the maximum profit because

P’(x)>0 forx < 50+% and P’(x) < 0 forx > 50+%.

A selling price of 50 +% will bring the maximum profit.

51. True. This is guaranteed by the Extreme Value Theorem
(Section 4.1).

52. False. For example, consider f(x)= x*ate=0.

53.D. f(x)=x*(60-x)
F/(x)=x*(=1)+ (60— x)(2x)
=—x%+120x - 2x?
=-3x> +120x
=-3x(x—40)
x=0 or x=40
60— x =60 60— x =20
x2(60-x)=0
(40)*(20) = (1600)(20)
=32,000

54. B. Since f’(x) is negative, f(x) is always decreasing, so
f(25)=3.
1
55.B. A=—bh
2

b* +h* =100
b=100-h*
A:g\/IOO—hZ

V100> W’

2 27100 - A2
A’=0 when h= \/_

b=4100-+50" =+/50
=5@@=25

56. E. length = 2x

A=

height =30—-x? —4x? =30-5x"
2x(30 - 5x%) = 60x —10x°
Z2(60x—10x) = 60—30x
dx
x=12
2
22302 —4(2)%) = 4042.

57. Normal

b

i
1
1
1
O
R Q
L) c :
Let P be the foot of the perpendicular from A to the mirror,
and Q be the foot of the perpendicular from B to the mirror.

A
1
ay
(ml
P




57. Continued
Suppose the light strikes the mirror at point R on the way
from A to B. Let:
a = distance from A to P
b = distance from B to Q
¢ = distance from P to Q
x = distance from P to R
To minimize the time is to minimize the total distance the
light travels going from A to B. The total distance is

D(x)= \/x2 +a* +\/(c—x)2 +b?
Then

D'(x)= [-2(c—x)]

2x)+

1 1
W +a® 2J(c—x)? +b*
cC—X

X
\/x2 +a’ \/(c—x)2 +b?
Solving D’(x)=0 gives the equation

X _ c—x
\/x2 +a’ \/(c— x)*+b°
Equation 1. Squaring both sides, we have:
x? _ (c—x)2
x> +d> (c—x)2 +b?
%2 I:(c—x)2 +b2]= (c—x)z()c2 +a2)

which we will refer to as

%2 (c— x)2 +x%b% = (c— x)z)c2 +(c— x)2a2
x2b% = (c—x)za2
b = [c2 —2xc+x? ]az
0 =(a2 - bz)x2 —2a%cx+a’c?
0=[(a+b)x—ac]l(a—b)x—ac]

orx =
a+b a—

Note that the value x = is an extraneous solution

a—

because x and ¢ — x have opposite signs for this value. The
ac

a+b’

only critical point occurs at x =

To verify that critical point represents the minimum
distance, note that

Wx®+a>) (1) - (x)[xJ
Vit +a®

b (X): X2+612 -

—(c—x)

Jie—x)?+b°
(c— x)2 +b?

_ (P +ad))-x c—x)’+b7 ]+ (c—x)’
x° +a2)3/2 [(c—x)? +172]3/2
~ o> N »?
x? +a2)3/2 [(c—x)? +b2]3/2’
which is always positive.
We now know that D(x) is minimized when Equation 1 is

W(e=x)* +b*) (=)= (c—x)
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PR R
true, or, equivalently, — = % This means that the two
right triangles APR and BOR are similar, which in turn
implies that the two angles must be equal.

58. ﬂzka—ka
dx

RIF

The critical point occurs at x = , which represents a

a
2
2

. d”v L .
maximum value because — = —2k, which is negative for
dx

all x. The maximum value of v is

2 2
kax—to® = ka| & |k 4| =K.
2 2) 4

59.(a) v= cror2 —cr®

% =2cryr — 3er? = cr(2ry —3r)

2,
The critical point occurs atr = TO. (Note that» =0 is

not in the domain of v.) The critical point represents a
. d*v .
maximum because = 2cry —6¢r = 2¢ (1, — 3r), which
dr

. . T
is negative in the domain EO <r<y,.

(b) We graphv=(0.5—- r)rz, and observe that the

maximum indeed occurs atv = (i)O.S = 1

N

[0, 0.5] by [—0.01, 0.03]

60. (a) Since A” (q) = —kmg ™ + g, the critical point occurs

km 2km
when —-=—, or ¢ = ———. This corresponds to the
¢ 2 h
minimum value of A(q) because A” (¢) = 2kmg >, which
is positive for g > 0.
(b) The new formula for average weekly cost is
k+b h
_k+bgm  ha

h
=@+bm+cm+7q

q
= A(q)+bm
Since B(q) differs from A(g) by a constant, the
minimum value of B(g) will occur at the same g-value
as the minimum value of A(g) . The most economical

2km

quantity is again
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61. The profit is given by

62.

63.

px)=r(x)—c(x)
=6x— (x> —6x2 +15x)
=—x° +6x? —9x, forx >0.

Then p’(x) = —3x% +12x -9 = -3(x — 1) (x — 3), so the critical

points occur at x = 1 and x = 3. Since p’(x) <0 for

0<x<1,p’(x)>0 for I <x <3,and p’(x) < 0 for x >3, the

relative maxima occur at the endpoint x =0 and at the

critical point x = 3. Since p(0) = p(3) =0, this means that

for x > 0, the function p(x) has its absolute
maximum value at the points (0, 0) and (3, 0). This result
can also be obtained graphically, as shown.

Haxiraum
=z =0

[0, 5] by [-8. 2]

The average cost is given by
a(x)= =)
x

a’(x) =2x—20 and the critical value is x = 10, which

=x>—20x+ 20,000. Therefore,

represents the minimum because a” (x) = 2, which is
positive for all x.The average cost is minimized at a
production level of 10 items.

(a) According to the graph, y”(0) = 0.
(b) According to the graph, y’(-L) = 0.
(¢) y(0)=0, so d=0.
Now y’(x) = 3ax? +2bx+c, s0 v’ (0) implies that

¢ =0. Therefore, y(x) = ax® + bx? and

y(x)= 3ax? +2bx. Then y(-L)= —al® +bI* = H and

y'(-L)= 3al’* —2bL = 0, so we have two linear

equations in the two unknowns a and b. The second

. . 3alL N )
equation gives b = %. Substituting into the first

3al?

equation, we have —al’ + T =H,or

3
ﬂ =H,soa= 2£. Therefore, b = 3£ and the
2 L r

equation for y

isy(x)= 2£2x3 +3£2x2, or
r L

o=l () |

2
64. (a) The base radius of the cone is r = ra

- X

and so the

height is h = Va? -r* =

/4 m(2ma—x : 2ma—x ’
V(x)==r*h== a*- .
3 3 2r 2

2ra—x ’
- ( ) . Therefore,
2

(b) To simplify the calculations, we shall consider the

volume as a function of r:

T
volume = f(r) = —r2\/a2 —r%, where 0 < r < a.

3

rw="L e )

3dr

| 2 1 [2_ 2
=—|r"e——=-<(2r)+(Na" —-r")(2r)
3 L 2\/(12—r2 :|
_m| = +2r(@ -r?)
3

a —r

2 2
3 a —r

_mr(2a®-2r%)

3Wa? - r?
2

. . 2a .
The critical point occurs when rt= =5 which

givesr = a\/; i . Then

T —(2a2r— 3r2):|

2 2
h=va*-r* = 2_2a” L ﬁ.Using
3 3 3
i 6 and h = Q,
3 3
we may now find the values of r and 4 for the given
values of a
whena=4:r i yh= %
5\/— 5\3
whena=5:r 3 T;

whena=6:r=2\/— h=2\/§;
_8J6 83

20 p=2
3 3

a6 a3 5

whena=8:r

(¢) Since r = —— and h = ——, the relationship i 1s —
3 3 h

65. (a) Let x, represent the fixed value of x at point P, so that P

has coordinates (x,, @) and let m =f”(x,) be the
slope of line RT. Then the equation of line RT is
y=m(x—xg)+a. The y-intercept of this line
ism(0—x,)+a=a—mx,, and the x-intercept is the

. mx,—a
solution of m(x —x,)+a=0,0rx = .Let O
m

designate the origin. Then (Area of triangle RST)




65. Continued
(a) =2 (Area of triangle ORT)

=2 % (x-intercept of line RT) (y-intercept of line RT)
2ot M0y
=2e¢— —— [(a—mx
2 m 0
—m mxy—a \[ mx,—a
m m
2
_ [mxy—a
2
=—m|x, - L
[+2)

Substituting x for x; ,f(x) for m, and f (x) for a, we

2
fu)}
/()

(b) The domain is the open interval (0, 10).

{ )
To graph, lety, = f(x)=5+5 1_R

= f’(x)=NDER (y,), and

2
Y3 =Ax)=-y, [x—ylzj .

The graph of the area function y; = A(x) is shown

have A(x) = —f’(x)|:x—

below.

[0, 10] by [-100, 1000]

The vertical asymptotes at x = 0 and x = 10 correspond
to horizontal or vertical tangent lines, which do not
form triangles.

(c¢) Using our expression for the y-intercept of the tangent
line, the height of the triangle is

a—mx= f(x)= f'(x)sx

LN T I S
2 24100 - x
=5+%\/100—x2 +

2
X
24100 - x

We may use graphing methods or the analytic method in
part (d) to find that the minimum value of A(x) occurs at
x = 8.66. Substituting this value into the expression
above, the height of the triangle is 15. This is 3 times
the y-coordinate of the center of the ellipse.

(d) Part (a) remains unchanged. The domain is (0, C). To
graph, note that

2
f(x)=B+B /1—%=B+g\/C2—x2 and
C
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(=2x)=

—Bx
fl(x)= .
N e iy

Therefore, we have

r 2
[ W
AC) =10 x f%m]

p+lJc2_ 2
Bx C
e

- C\/C2 2 —Bx

L cVer-¥?
r 2

_ Br | (BCHBNC -2’ )C? -
N[ ~Bx

- 2
- e +(BC+B\/CTx2)(\/C27)]
BCX\/C2 —-xL

X _
Bx*+ BC\VC? — x* + B(C? — x*

2
) BCxNC? -2t ]

r 2

I S BC(C+\/C2—x2)]
BCx\/C2—x2 -

_ BC(C+NC*—x*)?

xNC? = x?
(NC2 = x> )2XC +C? - x* [_sz_

Cc?—x
(C+NC?=x?) [ F +VC? —x (1>J
X(CT =)

2x2 —(C+C? = x?
e | P )
(€ =) { L C2—x2]

\Ve? -x2
) > 2 sz
_ BC(C+NC?—x?)| 25"+ ——=———=

A’'(x)=BC

2 2
2Jer_ 2 C -x
| —CNC? = x* +x> = (C? - x%)
BC(CH+NC?-xH)[ Cx? R
= —CVC*-x2 -C
x(C?—x?) c-x?

[2_ 2.\r
S BUCHC —X) sz—C(C2—x2)—C2\/C2—x2:|

2(CP—x2)?

2_
2D g ol
X

To find the critical points for 0 <x < C, we solve:
x*—C?=CNC? - x*
1t —4CiP +Ct =0t =
4x*-3C*x* =0
x*(4x*-3C*) =0
The minimum value of A(x) for 0 < x < C occurs at the

c3, 3c?

critical point x = - orx” = o The corresponding

triangle height is
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65. Continued
a—mx=f(x)— f'(x)sx

B Bx?
:B+E\/C2—x2 —

CVC? -2
2
- )
S o T SR
C 4 c (jz __;igzi
V 4
3BC?
—p+B[C) 4
c\2 c?
2
=B+§+3—B
22

This shows that the triangle has minimum area when its
height is 3B.

Section 4.5 Linerization and Newton's
Method (pp. 233-245)

Exploration 1 Appreciating Local Linearity

1. ‘-\\\//,-——‘

y=@x*+0.0001)""*+0.9

The function appears to come to a point.

2. fYa)= lim f)-fl@)
fia) lim ==
. (x?+0.0001)"* +0.9— (0+0.0001)"* +0.9)
x—a x—0
. (x*+0.0001)"* - 0.1
= lim =0
x—a X
fx) is differentiable at x = 0, and the equation of the tangent

lineisy=1.

3. The graph of the function at that point seems to become the
graph of a straight line with repeated zooming.

4. The graph will eventually look like the tangent line.

Exploration 2 Using Newton’s Method on
Your Calculator

See text page 237.

Quick Review 4.5

1Yo cos (241« L2 +1)=2xc0s (2 +1)
dx dx
5 @z (x+D(1=sinx)— (x+cosx)(1)
dx (x+1)?
_ x—xsinx+1-sinx—x—cosx
B (x+1)*
_ 1—cosx—(x+1)sinx
B (x+1)°
3.
—

vd

2eFo
#=-5671433 V=0

[=2,6] by [-3,3]
x =-0.567

Ty

Zgro
n=-32e1B5Y I¥=0

[—4, 4] by [—10, 10]
x=-0.322

5. f()=() (e )+ HM=e" —xe™"

fo=1
The lines passes through (0, 1) and has slope 1. Its equation
isy=x+1.

6. f'(0)=(x)—e )+ =€ —xe"

[ h=el—(=eh=2¢
The lines passes through (=1, —e + 1) and has slope 2e.
Its equation is y =2e(x+ 1)+ (—e+1), ory=2ex+e+1.

7.@@) x+1=0
x=-1
(b) 2ex+e+1=0
2ex=—(e+1)
== 64
2e



8. f'(x)=3x2-4
f/(H=31)2-4=-1
Since f(1)=-2 and f’(1) = -1, the graph of g(x) passes
through (1, —2) and has slope —1. Its equation is
gx)=—-1x—-1)+(-2),orglx)=—x—1.

x Jx) 8(x)
0.7 -1.457 -1.7
0.8 -1.688 -1.8
0.9 -1.871 -1.9
1.0 2 -2
1.1 -2.069 -2.1
1.2 -2.072 22
1.3 -2.003 -23

9. f'(x)=cosx
f'd.5)=cos 1.5

Since f (1.5) =sin 1.5 and f’(1.5)=cos1.5, the tangent line

passes through (1.5, sin 1.5) and has slope cos 1.5. Its

equation is y=(cos1.5)(x—1.5)+sinl.5, or approximately

y=0.071x+0.891

[0, ®] by [-0.2, 1.3]

#, and so f(4) = % Since

2yx -3

10. For x >3, f'(x)=
, 1 .
f@)=1landf'(4)= E, the tangent line passes through
1 Lo
(4, 1) and has slope 5 Its equation is

1 1
y=—(x—-4)+1, ory=—x-1.
2 2

/
3%

[-1.7]by[-2,2]

Section 4.5 Exercises

1.(a) f'(x)=3x>-2
We have f (2)=7 and f'(2)=10.
L(x)=f2)+f'(2)(x-2)
=7+10(x-2)
=10x-13
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(b) Since f(2.1) =8.061 and L(2.1) = 8, the approximation
differs from the true value in absolute value by less
than 107,

1 X
2Wx2+9 VxZ+9

We have f(—4)=5and f'(-4)= _g_

2.@a) f'(x)= (2x)=

L)=f(-D+ (D (x-(-4)
=5—%(x+4)

=——x+—
5 5

(b) Since f(-3.9)=4.9204 and L(-3.9)=4.92, the
approximation differs from the true value by less than
107,

3@ f)=1-x7
We have f(1)=2 and f'(1)=0.
L(x)=fM+f(Xx-1)
=2+0(x-1)
=2
(b) Since f(1.1) 2.009 and L(1.1)=2, the approximation
differs from the true value by less than 1072

4. f'()= %

X+
We have f(0) =0 and f"(0) = 1.

L(x)= f(0)+ f"(0)Xx - 0)
=0+1x
=x

(b) Since f(0.1) = 0.0953 and L(0.1)=0.1 the
approximation differs from the true value by less
than 107,

5.(@) f'(x)= sec? x
We have f(r)=0andf'(r)=1.
L(x)= f(m)+ f'(m) (x —7)
=0+1(x-m)
=x-7
(b) Since f(zx+0.1)=0.10033 and L(7+0.1)=0.1, the
approximation differs from the true value in absolute

value by less than 107,

6.() f(x)=—

1-x
We have f(0)= % and £7(0) = —1.

L(x)= f(0)+ f(0)(x - 0)
=7+ =0)

T
=—x+=
2
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6. Continued

(b) Since f(0.1) =1.47063 and L(0.1) = 1.47080, the
approximation differs from the true value in absolute
value by less than 107,

7. f(x)=k(1+x)*!
We have f(0)=1andf’(0)=k.

L(x)= f(0)+ f'(0)(x - 0)
=1+k(x-0)
=1+kx

8. (a) (1.002)'% = (1+0.002)' =1+ (100)(0.002)
=12;

‘1 002'% _1 .2‘ ~0.021<10™"

(b) 31.009 = (1+0.009)"* = 1+é(0.009) =1.003;

‘%/1 009 -1 .003‘ ~9%x107° <107

9.(a) f()=1-x)°=[1+=x)° =1+6(-x)=1-6x

2
(b) () == =201+ (0" = 21+ (D ()
=242
©) f)=0+x)"= 1+(_1]x X
2 2

1/3
10. (a) f(x)=(4+3x)" =41 [1+3:J

PLEI Y EA 0 | BT AR
3\ 4 4

2 1/2
() f(x)=V2+x> =«5[1+ ]

2
et
1 2/3 ! 2/3
s o)

2 1 2
=1+—| - =1-
30 2+x 6+3x

11. x =100

F£7100) = %(100)*"2 =0.05
£(100) =10+ 0.05(101-100) =10.05

12. x=27

, I N N
f2n= 3)(27) 77

F(27)=3+(1/27)(26—27)
1 _
—3-—~2062
YTy

13. x=1000
’ 1 -2/3 1
1000) = —~(1000)*" = —
7(1000) = =(1000) 300
y=10+(1/300) (x—1000)

1
y=10-

——=9.993
150

14. x =81

, _1 71/2=i
f(81)—2(81) T

1
=9+—(80-81
y 18( )

1 _
91 _g0a
YT

15. Let f(x)= x> +x—1. Then f’(x)=3x>+1and
3
_ _f(xn) . X, +xn—1

xn+l n ’ 7 2
fix,) 3x 2 +1
n

Note that fis cubic and f” is always positive, so there is
exactly one solution. We choose x, = 0.

x = 0
X, = 1
X, = 0.75

= 0.6860465
Xy = 0.6823396
Xo = 0.6823278
x, =0.6823278

;
Solution: x = 0.682328.

16. Let f(x) = x* + x—3. Then f’(x)=4x> +1and
f(x) xt4x =3
xn+l_xn_ ’ - :xn_ - .
fix) 4x P +1

The graph of y = f(x) shows that f(x) =0 has two
solutions.

|l
WV

[=3,3]by [-4. 4]

x,=-1.5 x =12

x, =—1.455 x, =1.6541962
xy =—1.4526332  x, =1.1640373
x, =—1.4526269 x, =~1.1640351
x5 =—1.4526269 x5 =1.1640351

Solution: x = —1.452627, 1.164035

17. Let f(x)= x> —=2x+1—sinx.
Then f’(x) =2x—2cosx and

2 .
f(xn) . X —2xn+1—s1nxn

xn+l n g “n
f1(x)

2x —2—cosx
n n



17. Continued
The graph of y = f(x) shows that f(x) =0 has two

solutions
i /

S

[-4. 4] by [-3. 3]

x,=0.3 x, =2

x, =0.3825699 x, =~1.9624598
x; =0.3862295 x, =1.9615695
x, =0.3862369 x, =1.9615690
x5 =0.3862369 x5 =1.9615690

Solutions: x = 0.386237, 1.961569
18. Let f(x) = x* —2. Then f’(x) = 4x> and
f(x) x -2
xn+l_ n_ ’ . :xn ’ :
f (xn) 4xn3

Note that f(x) = 0 clearly has two solutions, namely

X = i‘\‘/g. We use Newton’s method to find the decimal
equivalents.
x, =15
=~1.2731481
=~1.1971498
~1.1892858
x. =1.1892071
Xg =1.1892071
Solutions: x = +1.189207

X,
X
X

W oRs W =

19. (a) Since Z—y =3x2-3,dy=(3x>-3)dx.
X

(b) At the given values,
dy=(3» 22— 3)(0.05) =9(0.05) = 0.45.

2 2
20. (a) Since @: (l+x )(2)—(2x)(2x) _ 2_2X

(1+x%)2 S 1+x0?
_ 2
dy= 2-2x
(1+x2)?
(b) At the given values,
— — 2 —
dy= 2-2(=2) ©.)= 2 8(0.1)
[1+(=2°T 5
=-0.024.

21. (a) Since & = (xz) 1 +(Inx)2x)=2xInx+x,
dx X
dy=2x Inx+ x)dx.

(b) At the given values,
dy=[2(1) In(1)+1](0.01) =1(0.01) = 0.01

Section 4.5
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22. (a) Since dx—(x)[zm)( 2x)+(W1=x7)(1)

—x s —x2+(1-x%)  1-2x7

= +v1- ,
1-x2 ' \/l—x2 \/1—)62

dy= mdx.

1-2(0)?

J1=(0)?

23. (a) Since Z—y =™ cosx, dy = (cos x)e"™ dx.
X

(b) At the given values, dy =

(b) At the given values,
dy= (cosn)(eSi"”)(—O.l) =M 0.)=0.1.

24. (a) Since @=—3csc l—E cot 1—i —l
dx 3 3 3

=csc 1—ﬁ cot 1—ﬁ s
3 3
dy=csc 1= |eot| 1= |,
3 3

(b) At the given values,

dy= csc[l —l]cot(l —IJ(O.I)
3 3

=0.1csc %cot% =~(.205525

25.(@) y+xy—-x=0

y(l+x)=x
_ X
x+1
Since ﬂ= CRDOM€I]0) — 1 ,
(x+1)2 (x+1)°
dy= dx .
(x+1)?

(b) At the given values,
0.01

0+1)°

dy= =0.01.

26. (@) 2y =x*—xy
2dy = 2xdx — xdy — ydx
dy2+x)=2x—y)dx

dyz(zx_y)dx

2+x

(b) At the given values, and y = 1 from the original
2(2)-1
2+2

equation, dy = ( )(—0.05) =-0.0375

(-0.2)=-0.2.

201



202 Section 4.5

2. Do
dx

dy:(—zx]dx
2V1-x?

dy=——2—dx

28 D _ e +x°

dx
dy = (5¢> +5x*)dx

29. Q =tan"'4x

dx
-1 1 du
—tan u= —
1+u? dx
u=4x
du

30 & _ 8 +x%)

—a* =(na)a
dx

dy=(8"In8+8x")dx
31.(a) Af = £(0.1)- £(0)=0.21-0=0.21
(b) Since f'(x)=2x+2, f'(0)=2.
Therefore, df =2 dx = 2(0.1) = 0.2.
(©) |Af - df|=[021-0.2/=0.01
32.(a) Af = f(I.1)— f(1)=0.231-0=0.231
(b) Since f"(x)=3x> —1, f'(1) = 2.
Therefore, df = 2dx = 2(0.1) = 0.2.
(©) |Af - df|=|0.231-02|=0.031

33.(a) Af = £(0.55)— £(0.5) = %— 2= —12—1

(b) Since f'(x)=-x72, /(0.5 =—4.
Therefore, df =—4dx=-4(0.05)=-0.2= _é
2 1
—— + —
11 5

1

(©) |of —df|= -

34. (a) Af = £(1.01)— £(1) = 1.04060401— 1 = 0.04060401

(b) Since f'(x)=4x>, f'(1) =4.
Therefore, df =4 dx =4(0.01)=0.04.

(¢) |Af - df|=[0.04060401-0.04| = 0.00060401

35.

36

37.

38.

39

40.

41.

42.

43.

44.

45

Note that dd—v =4mr®,dV = 4nr’dr. When r changes from
r

a to a + dr, the change in volume is approximately
4ma’dr.

. Note that Z—S =8nr, so dS =8nrdr. When r changes from
r

a to a + dr, the change in surface area is approximately
8radr.

Note that fl—v =3x7, so dV =3x dx. When x changes from
X

a to a + dx, the change in volume is approximately

3a? dx.

Note that Z—S =12x, so dS =12x dx. When x changes from
X

a to a + dx, the change in surface area is approximately
12a dx.

. Note that dd—v =2nrh, so dV =2xrh dr. When r changes
r

from a to a + dr, the change in volume is approximately

Note that Z’—i =2nr, so dS =2nrdh. When h changes from

a to a + dh, the change in lateral surface area is
approximately 27r dh.

A=mr?
dA =2nrdr
dA =2r(10X0.1)=6.3 in?

v=i71:r3
3

dv = dnr’dr
dV = 47(8)*(0.3) = 241 in?

v=s

dVv = 3s%ds
dv =3(15)%(0.2) =135 cm?

V3

A=—""g"
4

3

dA=—sds
2

NE

dA= 73(20)(0.5) =8.7 cm?

. (@) Note that f’(0)=cos0=1.
L(x)=f0)+ f/0O)x—0)=1+1x=x+1

(b) £(0.1)=L(0.1)=1.1



45.

Continued

(¢) The actual value is less than 1.1. This is because the

46.

47.

48.

49.

derivative is decreasing over the interval [0, 0.1], which
means that the graph of f(x) is concave down and lies
below its linearization in this interval.

(a) Note that A= nr? and Z—A =2nr, sodA=2rrdr.
r

When r changes from a to a + dr, the change in area is
approximately 2ma dr. Substituting 2 for a and 0.02 for dr,
the change in area is approximately

2m(2)0.02) = 0.087 = 0.2513

by A0 _ 02,
A 4
Let A = cross section area, C = circumference, and
D = diameter. Then D = g, SO d—D = l
T dC &
1 pY cY ¢
anddD=—dC. Also,A=n|— | =n| — | =—,
T 2 2 4r
) d—A = < and dA = £dC. When C increases from
dC 2r 21

107 in. to 107z + 2 in. the diameter increases by

dD = l(2) = 2 = (0.6366 in. and the area increases by
T T

approximately dA = 120—”(2) =10 in’.
T

Let x = edge length and V = volume. Then V = x°, and
sodV =3x? dx. Withx=10 cm and dx =0.01x=0.1 cm,

we have V= 10°= 1000 cm® and
dv= 3(10)2 0.1)=30 cm®, so the percentage error in the

volume measurement is approximately
av. 30

= =0.03=3%.
V1000

Let x = side length and A = area. Then A = x*and

ZA =2x, so dA =2xdx. We want ‘dA‘ <0.02A, which
Ix

gives ‘2xdx‘ <0.02x2, or ‘dx‘ <0.01x. The side length

should be measured with an error of no more than 1%.

5
For 6=75°= 7 radians, we have

‘d@‘ <0.04 sin%cos% = (.01 radian. The angle should be

measured with an error of less than 0.01 radian (or
approximately 0.57 degrees), which is a percentage error of
approximately 0.76%.
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50. (a) Note that V = zr2h = 107r> = 2.5xD*, where D is the

interior diameter of the tank. Then Z—V =5nD,
D

50 dV = 5D dD. We want ‘dV‘ <0.01V, which

gives|SmDdD| < 0.012.57D), or|dD| <0.005D. The

interior diameter should be measured with an error of no
more than 0.5%.

(b) Now we let D represent the exterior diameter of the
tank, and we assume that the paint coverage rate
(number of square feet covered per gallon of paint) is
known precisely. Then, to determine the amount of
paint within 5%, we need to calculate the lateral surface
area S with an error of no more than 5%. Note that

S =2nrh=107D, so % =107 and dS =10 dD. We

want |dS|<0.05S, which gives [107dD|<0.05(107D),

ordD <£0.05D. The exterior diameter should be
measured with an error of no more than 5%.

51. Note that V= nrzh, where A is constant. Then d—v =2nrh.

dr
The percent change is given by

av _dmhdr _dr _0.1%r
Vv rih r r

=0.2%.

52. Note that Z—: = 37rh2, s0 dV =3rh® dh. We want

V| <0.01V, which gives

37th2dh‘ <0.01(zh*),

0.01%
3

or ‘dh‘ < . The height should be measured with an

1
error of no more than g%.

53. Since V = %mﬁ, we have

1 2
dV =4nridr = 4nr*| — |=_—. The volume error in
167 4
2
. rY. 3
each case is simply Iln .
Sphere True Tape Radius Volume
Type Radius error Error Error
Orange 2in. 1/8in. | 1/16m in. lin3
Melon 4 in. 1/8in. | 1/16m in. 4in’3
Beach 7 in. 1/8in. | 1/16xin. | 1295in3
Ball
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54. Since A = 47rr2, we have dA =8nrdr =8nr L = 1.
lér ) 2
The surface area error in each case is simply % in%.
Sphere True Tape Radius Volume
Type Radius Error Error Error
Orange 2in. | 1/8in. | 1/16min. | 1in?
Melon 4in. | 1/8in. | 1/16min. | 2in?
Beach Ball 7 in 1/8in. 1/16zin. | 3.5in.2

55. We have ‘;—W =—bg*, s0 dW =—bg *dg.
g

aw —b(5.2)72 22
moon _ ~bG5-2) "dg _ 32" _ 1767 e ratio is

dw -b(32)2dg  5.2%

earth

about 37.87 to 1.

Then

56. (a) Note that 7 =27L" 2g_l/z, so ar = —7rL1/2g_3 * and

dg
dT =—-nL' 2g73/2dg‘

(b) Note that dT and dg have opposite signs. Thus, if
g increases, T decreases and the clock speeds up.

© —n1g ¥ qg = ar
—7(100)2(980) %2 dg = 0.001
dg ~—-0.9765

Since dg =-0.9765,g =980-0.9765=979.0235.

57. True. A look at the graph reveals the problem. The graph
decreases after x=1toward a horizontal asymptote of
x =0, so the x-intercepts of the tangent lines keep getting
bigger without approaching a zero.

58. False. By the product rule, d(uv)=udv + vdu.

59.B. f(x)=¢"
f)=e'
L(x)= e +el(x— 1)
L(x)=ex
60. A. y=tanx
dy = (sec® x)dx = (sec? 1)0.5
dy=-0.25

61.D. f(x)=x—-x>+2

f/x)=1-3x>
xnxn3+2
X =X ——
n+l n 1_3Xn2
-’ +2
2:1—72 =
1-3(1)

2-2%+2 18
X3 :2_72:7
1-3(2) 11

62.A. fx)=3x, x=64

Foh = e =L
3 48

Y66 = 4+ (66-64)
48

/66 = 4.042
The calculator returns 4.041, or a 0.01% difference.

63.1f f’(x)#0, wehave x, =x, - ]{,((xl)) =x - f’? : =X,
x, x,

Therefore, x, = x,, and all later approximations are also

equal to x,.

64.If x, = h, then f’(xl) = L and

2hl/2
h1/2
x2=h— 0 =h-2h=-h. If X, =—h, then
2hl/2
1 hl/z
f’(x1)=—— and x, =—h- =—h+2h=h
wh 1
2h1/2
e "
[—3,3]by [—-0.5,2]
oo L o3
65. Note that f (x)—gx and so
fx) x 13
X =x - no—x ——1n =x —3x =-2x .For
n+ n f/(xn) n X -2/3 n n n
3
x,=1, we have x, =-2, x, =4, x, =-8, and
xg = 16; xn‘ =21

=
]

[-10, 10] by [-3, 3]
66. (a) i. Q(a)= f(a) implies that bo = f(a).
ii. Since Q’(x)= bl + 2b2 (x—a), Q’(a) = f'(a) implies
that bl = f'(a).




66. Continued
iii. Since Q”(x)= 2b2, Q”(a)= f"(a) implies that

y L@

2 2

In summary, bo = f(a), b, = f'(a), and b, = f”z(a).

(b) fx)=(1-x)"
f@)=-11-x)2(=h=(1-x)"
fr)y=-20-x"(-)=2(1-x)"

Since f(0)=1,f’(0)=1, and f”(0) = 2, the coefficients are

2
bo =1b =1 and b, = E =1. The quadratic approximation

is Q(x)=1+x+x%
(©) //
o

[-2.35, 2.35] by [-1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

@ gx=x"
() =—x"?
g"(x)= 2573

Since g(1)=1,g’(1)=—1, and g”(1)=2, the

coefficientsare b =1, b, =—1, and b, = Ez 1. The
0 1 2 2

quadratic approximation is Q(x)=1-(x—-1D)+(x— 2.

""\
[-1.35,3.35] by [-1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical

h(x)=1+x)"

~

(e
B(x)= l(1 +x)72
2

W0 =L (140"
4
. ’ 1 ” 1
Since h(0)=1,h"(0)= 5, and h”(0)= —Z, the

1
_4__
2

coefficients are b, =1, b =1, and b, = 1
0 175 2 3
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2
The quadratic approximation is Q(x) =1+ 5 - ?

]

[-1.35, 3.35] by [-1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

(f) The linearization of any differentiable function u(x) at
x=ais L(x)=u(a)+u’(a)x—a) = by + b, (x — a), where
by and b, are the coefficients of the constant and linear
terms of the quadratic approximation. Thus, the
linearization for f(x) at x = 0 is 1 + x; the linearization
for g(x) atx=11is 1 —(x—1) or 2 —x; and the

linearization for A(x) at x =0 is l+§.

67. Finding a zero of sin x by Newton’s method would use the
sin(xn)

recursive formulax = =x —
n+l n

=x —tanx ,and that
cos(x ) " "

is exactly what the calculator would be doing. Any zero of
sin x would be a multiple of 7.

68. Just multiply the corresponding derivative formulas by dx.

(a) Since i(c) =0,d(c)=0.
dx

(b) Since a4 (cu) = c@, d(cu) = c du.
dx dx

(c) Since i(u+v)=d—u+ﬂ, d(u+v)=du+dv
dx dx dx

(d) Since i(u e V)= u@+vdl, dlusv)=udv+v du.
dx dx dx

v 2 v 2

o

% du—ud

(e) Since 1| 4 |=dx__dx gl 1| vaumudy
dx v v

(f) Since diu” = ™! @, d™) = nu""\du.

x dx

. tanx . sinx/cosx

69. lim——=lim——
=0 X x—0 X

. 1 sinx
=lim| ———
-0\ cosx x

. . sinx
=| lim lim J
x—=0cosx J\ x-0 x
=D =1.
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70. g(a)=c, soif E(a)=0, then g(a) = f(a) and c = f(a). Quick Review 4.6
Then E(x) = f(x)—g(x) = f(x)— f(a)—m(x—a).

_J-07 +0-57 = _
Ew _fW-f@_ 1. D=\(7-0) +(0-5)> =49+25 =74

Thus
fx)_af ) L ) 2. D=A(b-0) +(0-a) =’ +5?
. f)-fl@ _ . E(x)
hin = f(a), so lim =f(@)—m. 3. Use implicit differentiation.
x—a X—a x—ax—a d d
—_ 2 -
Therefore, if the limit of Ex) is zero, then m= f’(a) and dx Cxy+y7) dx (x+)
x—a dy dy dy
g (¥) = L. 2xa+2y(l)+2yaz(l)+a
dy
1. ()= —— 4 cosx (@x+2y-Dho =1-2y
24x+1 dy  1-2y

dx 2x+2y-1
We have f(0) =1 and f’(0) =

L(x)=f(0)+ f(0)(x—0)

4. Use implicit differentiation.

d d
—(xsiny)=—(1-
:1+Ex dx( V) dx( )
)05 ) 2+ sin y) (1) = —x 2 — y(1)
The linearization is the sum of the two individual Y dx Y T T dx y
d .
linearizations, which are x for sin x and 1+ %x forvx+1. (x+xcos Y);i =—-y—Smy
dy _—y-—siny
Section 4.6 Related Rates (pp. 246-255) dx  x+xcosy
Exploration 1 Sliding Ladder dy _ _ ytsiny

dx X+ Xxcosy
1. Here the x-axis represents the ground and the y-axis

represents the wall. The curve (x;, y, ) gives the position of S Use implicit differentiation.

d

the bottom of the ladder (distance from the wall) at any Ex ’= E tan y
time rin 0 <¢<5. The curve (x_, y, ) gives the position of o dy

272 2x=sec” y—
the top of the ladder at any time in 0 <7 <5. dx

dy 2x
.0<t< e
2.0<t<5 dx  sec? y

4. This is a snapshot at # = 3. 1. The top of the ladder is
moving down the y-axis and the bottom of the ladder is
moving to the right on the x-axis. The end of the ladder is
accelerating. Both axes are hidden from view.

d
@ _ 2xcos? y
dx

6. Use implicit differentiation.

d d
Lnx+y)=—@
o n(x+y) dx( x)

1(]+dy):2
x+y dx

dy
1+=2=2(x+
i (x+y)

(=1, 15] by [~1. 15]
dy =2x+2y-1
6 dy _ —AT dx
dr 102 - (2T)? 7. Using A(=2, 1) we create the parametric equations
x=-2+atand y =1+ bt, which determine a line passing
7. y'(3) = —4.24 ft/sec’. The negative number means the through A ar t = 0. We determine a and b so that the line
ladder is falling. passes through B(4, =3) at t = 1. Since 4 = -2 + a, we have

8. Si i s a =6, and since -3 = 1 + b, we have b = — 4. Thus, one
- Since ,_>(}§I}3)fy (1) = —eo, the speed of the top of the ladder parametrization for the line segment is x = -2 + 6¢,

is infinite as it hits the ground. y=1-4t,0<r<1. (Other answers are possible.)
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8. Using A(0, —4), we create the parametric equations A df1 )
x =0+ at and y =—4 + br, which determine a line passing 6. A dr Eab sin®
through A at r = 0. We now determine a and b so that the
line passes through B(5, 0) at t = 1. Since 5 =0 + a, we have dizl da ebesinf+as db esinO+ab e isin@
a =15, and since 0 =—4 + b, we have b = 4. Thus, one dr 2\ dt t dt
parametrization for the line segment is x = 5¢, y =—4 + 41,0 dA 1 . da . db do
. —=—| bsin@—+asin@—+abcos@—
<t < 1. (Other answers are possible.) dr 2 dt dt dt
9. One possible answer: n <1< 3 7. (a) Since V is increasing at the rate of 1 volt/sec,
2 2 dav
—— =1volt/sec.

3 dt
10. One possible answer: > <t<2m

(b) Since I is decreasing at the rate of

Section 4.6 Exercises — ampl/sec, a__1 ampl/sec.
3 dt 3

. dA dAd dA d
1. Since = ——r, we have — = 27rr—r, (c) Differentiating both sides of V = IR, we have
dt dr dt dt dt
av_ R dl
2. Since Z—S = Z—S%, we have iTS =8nr Zr. dt dt dt
d rat d g (d) Note that V = IR gives 12 =2R, so R = 6 ohms. Now
3. (a) Since av _ dav dh _we have av - dh . substitute the known values into the equation in (c).
dt dh dt dt dt dR 1
1= 2; + 6 —g
(b) Since av = dlﬂ’ we have av = 27trhﬂ.
dt dr dt dt dt 122 dR
T ar
© Y42 ni(rzh) dR 3
dr dt dt — = —ohms/sec
av dh d di 2
av _ | 24 ar
dt ﬂ(r dt Th2n) dt J R is changing at the rate of 3 ohms/sec. Since this
2
dv 5 dh dr . .. .. .
—=ar-—+2nrh— value is positive, R is increasing.
dt dt dt
8. Step 1:
P = 1
4. (a) dp _ i(RIZ) r = radius of plate
dt dt A = area of plate
dip:Rilz_,_[ZdiR Step 2:
dt dt dt dr
dP Rl 27 dl 2 dR At the instant in question, z =0.01 cm/sec, r =50 cm.
at _ @ ar t
dt dt dt Step 3:
dP dl ,dR ep 3t
= =oRI—+1P=— . dA
dt dt dt We want to find I
t
(b) If P is constant, we have d—P =0, which means Step 4
dt A=mr?
2R1ﬂ+12d7R=0’ o PR __2Rdl __2Pdl Step 5
dt dt dt I dt I3 dt
dA dr
ds _d a
5. 0 =" \x? 4yt 427
ar arVt YR Step 6:
ds 1 d, 2 5 dA _ — rom?
= - T (xP+vi+ — =2m(50)0.01) = cm~ / sec
7 7 (x"+y +2%) a

222+ 22 . . . . .
At the instant in question, the area is increasing at the rate

ds 1 ( dx . dy dz) 2
e | 2x 42y 427 of rem”/sec.
dt 2’x2+y2+z2 di dt dt

de dy dz

X+ y—+
ds _ " dt Y dr

dt /x2+y2+zz
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9. Step 1:
[ =length of rectangle
w = width of rectangle
A = area of rectangle
P = perimeter of rectangle
D =length of a diagonal of the rectangle

Step 2:
At the instant in question,
di dw
—=-2cm/sec, — =2 cm/sec, [ =12 cm, and w =5 cm.
dt dt
Step 3:
‘We want to find %,d—P and d—D
dt dt
Steps 4, 5, and 6:
@A=Iw
dA dw dl
—=l—+w—
dt dt dt
dA 5
I =(12)2)+(5)(-2)=14 cm~“/sec

The rate of change of the area is 14 cm” /sec.

(b) P=2[+2w
ap _,dl  ,adw
dt dt dt
dP

= AD+2) =0 misec

The rate of change of the perimeter is 0 cm/sec.

(©) D=+I*+w?
dl dw

I—+w—
ab__ 1 (2ldl+2wdw)—dt dt

di oy Udt T dr ) 2y,

dD _(12X2)+(5)2) _ 14

—— cm/sec
dt 122 + 52 13
The rate of change of the length of the diameter is
14
—— cm/sec.
13

(d) The area is increasing, because its derivative is positive.

The perimeter is not changing, because its derivative is
zero. The diagonal length is decreasing, because its
derivative is negative.

10. Step 1:

X, y, = edge lengths of the box

V = volume of the box

S = surface area of the box

s = diagonal length of the box

Step 2:
At the instant in question,
dx dy

— =1 m/sec, — =-2 m/sec, gzl m/sec, x =4m,
dt dt dt

y=3m, and z=2m.

Step 3:
We want to find d—v é, and ﬁ
dr dt dt
Steps 4, 5, and 6:
(a) V=xyz
av _ dz dy

Xy—+xz—+ yzd—x
dt dt dt dt

v #B)D+(#N2)(-2)+(3)2)(1) =2 m*sec

dr
The rate of change of the volume is 2 m? /sec.

(b) S =2(xy+xz+yz)
dSz(xdy de  dz dx  dz dy)

R Sy R
ar \ar a  a a  a
ds

T 2[(4)=2)+ XD + (@)D +2xD
+Q)XD)+BXD+(2)X-2)]=0 m> /sec

The rate of change of the surface area is 0 m? /sec.

(c) s=\/x2 +y2 +72

ds 1
R
__dt " dt dt
ds _(AH+32)+DH _ 0
N PO S )
The rate of change of the diagonal length is 0 m/sec.

Zxd—x+2yﬂ+2zﬂ
dt dy

=0 m/sec

11. Step 1:

r =radius of spherical balloon
S = surface area of spherical balloon
V = volume of spherical balloon

Step 2:
. . . dv 3, .
At the instant in question, Z =100z ft”/min and r=>5 ft.
t

Step 3:
ds

We want to find the values of ﬂ and —.
dt dt

Steps 4, 5, and 6:

4 3
a)V=—nx
(a) 3"
dl:4n-r2ﬂ
dt dt
1007 = 47(5)* dr
dt
ﬂzlﬂ/min
dt

The radius is increasing at the rate of 1 ft/min.



11. Continued

(b) S =4nrr?
d—S = Sﬂrﬂ
dt dt
ds
= =851
& () ¢Y)
ds

= =407 ft* / min
dt
The surface area is increasing at the rate of 407
ft* /min.
12. Step 1:
r =radius of spherical droplet

S = surface area of spherical droplet
V = volume of spherical droplet

Step 2:
No numerical information is given.

Step 3:
dr .
‘We want to show that d— is constant.
1

Step 4:

4
S= 47rr2, V= 5”73’ ? = kS for some constant k
t

Steps 5 and 6:
2dr

Differentiating V = %mﬁ , we have av =4rr 4
t

Substituting kS for dd—v and S for 47tr?, we
t

havekS:Sﬂ,orSﬂzk.
dt dt

13. Step 1:
s = (diagonal) distance from antenna to airplane
x = horizontal distance from antenna to airplane

Step 2:
At the instant in question,

s =10 mi and %=300 mph.

Step 3:

We want to find d—x
dt

Step 4:

X2 +49=5% orx=+/s" —49

Step 5:

de_ 1 (2d) s dr
di - 2 49\ dit) [ _yg di
Step 6:

dx 10 3000

= ———(300)="— mph ~420.08 mph
dr - 10% -49 V51

The speed of the airplane is about 420.08 mph.

Section 4.6

14. Step 1:
Kite
1

I
1300 fi

1

1

Inge -
X

s = length of kite string
x = horizontal distance from Inge to kite

Step 2:

At the instant in question, ;ﬂ =25 ft/sec and s =500 ft
t

Step 3:

We want to find @
dt

Step 4:

x*+300% =5°

Step 5:

2x%= 25% or x% = s%
Step 6:

209

At the instant in question, since x> +300% = 52, we have

x =52 =300 =4/500% — 300 = 400.
ds ds

Thus (400)25)= (SOO)%, so —, so — =20 ft/sec. Inge

de’  dt
must let the string out at the rate of 20 ft/sec.

15. Step 1:

C

6in.

—r—
The cylinder shown represents the shape of the hole.
r =radius of cylinder
V = volume of cylinder

Step 2:

. . . dr 0.001in. 1
At the instant in question, — = ———=
3min 3000

and (since the diameter is 3.800 in.), » = 1.900 in.

Step 3:

We want to find d—v
dt

Step 4:
V=nr*(6)=6mnr’
Step 5:

av dr

—=12nr—
dt dt

in./min
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15. Continued 17. Step 1:
Step 6: f-45mH
dv 1 197 -
—=121(1.900)] —— |=——=0.00767 \’\
dt 3000 2500
L3, 6 m \I\
=0.0239 in’ /min. b

The volume is increasing at the rate of approximately

0.0239 im*/min.
r =radius of top surface of water

16. Step 1: h = depth of water in reservoir
V = volume of water in reservoir
i Step 2:
At the instant in question av_ —50 m*/min and =5 m
—r— question. = ~
r = base radius of cone Step 3:
— hej . dh dr
h =height of cone We want to find —— and —.
V = volume of cone dt dt
Step 4:
Step 2: ho6
dv Note that —=— by similar cones, sor =7.5h.
At the instant in question, & =4 m and ” =10 m?/min. ro45
1 1
Step 3: Then V = gm2h = g7r(7.5h)2h =18.757h’
We want to find dh and ﬂ Steps 5 and 6:
dt dt av dh
Step 4: (a) Since V = 18.757rh3,z =56.25wh® o
Since the height is 3 of the base diameter, we have 5. dh
8 Thus —50=56.257(5 )E, and
3 4
h==Q2r) or r=—h.
8 3 SO dh = -8 m/min = _32 cm/min.
1 | (4 Y L6k dt 225m 74
_ - 2 _ - - _ ﬂ .
Wealso have V= 3 mrh= 3 ”( 3 h] h= 27 We will The water level is falling by 3—2 ~1.13 cm/min.
T
3
use the equations V = orh and r = %h (Since % <0, the rate at which the water level is
Step 5 and 6: falling is positive.)
2
(a) d—V = 167h % (b) Since r = 7.5h,ﬂ = 7.5ﬁ = —Q cm/min. The rate of
dt 9 dt dt dt 3
0= 167(4)> dh change of the radius of the water’s surface is
9 d 80 _ g 49 cow/min.
@—ﬂm/min—llzscm/min 3ﬂ
dt 1287w 321 18. (a) Step 1:
The height is changing at the rate of y = depth of water in bowl
1125 . V = volume of water in bowl
——=11.19 cm/ min.
32z Step 2:

(b) Using the results from Step 4 and part (a), we have At the instant in question, ddl — 6 m®/min and
1

dr_4dn_afn2s) 315

di 3dr 3\ 321 ) 8z ' y=8m.

The radius is changing at the rate of Step 3:

’;ﬂ =~14.92 cm/min. We want to find the value of %
b4

Step 4:

V=%y2(39—y) or V=l37z'y2 —%y3



18. Continued

Step 5:

av 2 dy
—=QQ6ry—-my )—
o - Bomy—my)—
Step 6:

—6= [267:(8) - n(Sz)]%

6= 1447

dr
D1 901326 mimin
dt 24m

or — é =~—1.326 cm/min
61

(b) Since r + (13— y)* =132,
r=169— (13— y)? =26y 2.

(c) Step 1:
y = depth of water

r =radius of water surface
V = volume of water in bowl

Step 2:

. . . av .
At the instant in question, d— =6 m’ /min, y =8 m,
t

and therefore (from part (a)) ﬂ = —L m/min.

dt 24r

Step 3:

We want to find the value of %
t

Step 4:
From part (b), r= \/m
Step 5:

1 13-
o1 poapy®o Doy &
dt 9 Jr6y—y? di\ey—y* di
Step 6:
dr__13-8 (1 )_s5(_ 1
dt 26(8)— g2 —24r 12\ 24rm
=— =~ —0.00553 m/min

2881
or —12° _ 0553 c/min
2r
19. Step 1:

x = distance from wall to base of ladder
y = height of top of ladder

A = area of triangle formed by the ladder, wall, and ground

y dy

)

6 = angle between the ladder and the ground

Step 2:

At the instant in question, x = 12 ft and ;ﬂ = 5 ft/sec.
t
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Step 3:

We want to find —%,2—?, and %
Steps 4, 5, and 6:

(@) x> +y* =169

2xd—x+2y@ =0
dt dt

To evaluate, note that, at the instant in question,

y=1169-x? =169 12% =5.
Then 2(12)(5)+2(5)%=0

@z—IZ ft/sec | or —Qz 12 ft/sec
dt dt

The top of the ladder is sliding down the wall at the rate
of 12 ft/sec. (Note that the downward rate of motion is
positive.)

1
b) A=—
(b) ny

dA 1( dy dx
— = x—=+ y—
dr 2\ dt dt

Using the results from step 2 and from part (a), we have

% = %[(12)(—12) +(5X5)] = —% ft? /sec. The area of

the triangle is changing at the rate of —59.5 ft* /sec.

(c) tanf = b
X
dy dx
2 Gﬁ “a ar
dt x2

. 5
Since tan@ = —, we have

forOS9<E cost9=E and sosec’ 0 ! =@.
2 13 12 2 144
i

Combining this result with the results from step 2 and

from part (a), we have @ﬁ = w, )

144 dt 122
de . . .
Z =—1 radian/sec. The angle is changing at the rate
t
of —1 radian/sec.
20. Step 1:

h = height (or depth) of the water in the trough
V = volume of water in the trough

Step 2:

At the instant in question, iTV =251ft>/min and h =2 ft.
t
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20. Continued

21.

Step 3:
We want to find @
dt

Step 4:

The width of the top surface of the water is %h, SO we

have V = ;(h)(gh)(IS), or V =104>

Step 5:

av = ZOh@
dt dt

Step 6:

25= 20(2)ﬁ
dt
dh

=0.0625= i ft/min
dt 16

.. . 1 .
The water level is increasing at the rate of — ft/min.

Step 1:

[ =length of rope

x = horizontal distance from boat to dock

0 = angle between the rope and a vertical line

Step 2:

At the instant in question, % =-2 ft/sec and /=10 ft.
t

Step 3:
We want to find the values of —d—x and d—e
dt dt

Steps 4, 5, and 6:

(@) x=+1*-36

dx _ I d

dt /12—36 dt

ax _ L(—z) =-2.5 filsec
102 -36

The boat is approaching the dock at the rate of
2.5 ft/sec.

(b) Gzcos_l?
619__1(_6)0”
dt (6)2 %) dt
1_ —
1
de 1 6 3 .
E - _1_(162(_1()2J(—2) = —2—0 radian/sec

The rate of change of angle 6 is —% radian/sec.

22. Step 1:

23.

24,

x = distance from origin to bicycle
y = height of balloon (distance from origin to balloon)
s = distance from balloon to bicycle

Step 2:
‘We know that ? is a constant 1 ft/sec and ;ﬁ is a

constant 17 ft/sec. Three seconds before the instant in
question, the values of x and y are x =0 ft and y = 65 ft.
Therefore, at the instant in question x = 51 ft and y = 68 ft.

Step 3:

) ds . . .
We want to find the value of o at the instant in question.
t

Step 4:

s=qx7+y?

Step 5:

ds_ 1 (,ode oody)_Yar ar
a2 \Ta T )T ey
Step 6:

ds _ (51X17)+(68)1)

i 517 +68

The distance between the balloon and the bicycle is
increasing at the rate of 11 ft/sec.
b _dydx

- 10422 2o F o 20x
dr dt dt dt (1+x%) dt

=11 ft/sec

Since % = 3cm/sec, we have

Q:—L{:z cm/sec.

dt (I+x7)

(a) @=—760(_22 > =%=ﬁcm/sec
dr [1+(=2%*P? 5> 5

(b)ﬂ=—&2)2=0 cm/sec
dt 1+07%)

© L= —%2)2 ~~0.00746 cm/sec
dt (1+207)

ﬂ:@dl:(3x2_4)dl

dt  dx dt dt

Since ﬁ =-2 cm/sec, we have ﬂ =8—6x% cm/sec.
dt dt
@ D g 6(~3)* =—46 cm/sec
dt
(b) % =8—6(1)> =2 cm/sec

(©) % =8—6(4)> =88 cm/sec



25.

26.

Step 1:
y

x = x-coordinate of particle’s location
y = y-coordinate of particle’s location
0 = angle of inclination of line joining the particle to the

origin.

Step 2:

At the instant in question,
é=10 m/sec and x =3 m.
dt

Step 3:

We want to find d—e
dt

Step 4:
Since y= xz, we have tan 0 = Y_X _ x and so,
X X

for x>0,
0=tan' x.
Step 5:
do_ 1 dx
dt 142 dt

Step 6:

do 1
dr o 1+3
The angle of inclination is increasing at the rate of
1 radian/sec.

(10) =1 radian/sec

Step 1:

(x, )
\\\ 0
\\

x = x-coordinate of particle’s location

y = y-coordinate of particle’s location

0 = angle of inclination of line joining the particle to the
origin

Step 2:

At the instant in question, m =-8m/secand x =—4m.
t

27.
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Step 3:
We want to find d—e,
dt

Step 4:

N

Since y=+/—x, we have tanf = b =(-x)""2,
X

and so, for x <0,

6=m+tan"'[-(-x)"*]=

m—tan" (—x) V2.

Step 5:
do 1 1 =32 dx
e = (= (=)D =
dt 1+[(—x)_1/2]2(( AN 7
- dr
1_ 1 2=x)? dt
x
N 4
2-x(x—1) dt
Step 6:
ﬁzé(—&:z radian/sec
dt 2Ja(-4-1) 5

The angle of inclination is increasing at the rate of

2
g radian/sec.

Step 1:

r =radius of balls plus ice

S = surface area of ball plus ice
V = volume of ball plus ice

Step 2:

At the instant in question,

av . 3, . 1

A =—-8mL/min =—-8cm”/minandr = 5(20) =10cm.
Step 3:

We want to find —ﬁ.
dt

Step 4:

4
We have V = gnr3 and S =47r’. These equations can be

1/3 2/3
combined by noting that r = v , s0 S=4r v
4r 4
Step 5:
ds 23" 3Yav (3vY"av
dt 3N\4rn 4 ) dt Y 4 dt
Step 6:
Note that V = & z(10y* = 20007
3 3
ds 3 40007 " 16
= =2 =. (-8)= =-1.6cm?/min
dt Ar 3 31000

. ds . .
Since I <0, the rate of decrease is positive. The surface
t

area is decreasing at the rate of 1.6 cm? /min.
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28.

29.

Step 1:

x = x-coordinate of particle

y = y-coordinate of particle

D = distance from origin to particle

Step 2:
At the instant in question, x=5m, y =12 m,
dx

— =—1 m/sec, and @ = -5 m/sec.
dt dt

Step 3:

We want to find d—D
dt

Step 4:
D=\lx2+y2
Step 5:
dxdy
dDzl(Zxdx+2ydy):dzydr
dt 2 lx2+y2 dt dt lx2+y2
Step 6:

dD _(5)(ED+ID(5) _

= =—5m/sec
dt V52 +122

The particle’s distance from the origin is changing at the
rate of -5 m/sec.

Step 1:
Street
light
16 ft
6 ft
Shadow
P—x—t—s—

x = distance from streetlight base to man
s = length of shadow

Step 2:
At the instant in question, — = —5ft/secand x = 10 ft.
t
Step 3:
We want to find @
dt

Step 4:

+
By similar triangles, % = % This is equivalent to

165 =6s5+6x,0r s = gx.

Step 5:
ds_3dv
dt 5dt

30.

31.

Step 6:

ds 3

L= 2(-5) = 3fifsec

dt 5

The shadow length is changing at the rate of -3 ft/sec.
Step 1:

s = distance ball has fallen
x = distance from bottom of pole to shadow

Step 2:

2
At the instant in question, s = 16[;) =4 ftand

é = 32(;) =16ft/sec.

dt
Step 3:
We want to find d—x
dt

Step 4:

-30
By similar triangles, XO =~ Thisis equivalent to

-5

50x — 1500 =50x — sx, orsx =1500. We will use
x=1500s".

Step 5 :

dx 2 é

— =-500s
dt dt

Step 6:

d -

dfx =-1500(4)(16) = —1500 ft/sec

t

The shadow is moving at a velocity of —1500 ft/sec.

Step 1:

x = position of car (x =0 when car is right in front of you)
0 = camera angle. (We assume 6 is negative until the car

passess in front of you, and then positive.)

Step 2:
At the first instant in question, x = 0 ft and 2—)( =264 ft/sec.
t
1 dx
A half second later, x5(264) =132 ftand d— =264 ft/sec.
t
Step 3:
., do .
We want to find d— at each of the two instants.
t
Step 4:
0 = tan_l i
132
Step 5:
de 1 1 dx

dt LV 132dr
1+
(132)



31.

32.

33.

Continued
Step 6:
When x=0: L = S S (264) = 2 radians/sec
dt 0 \132
1+ —
(132)
When x=132: 46 = l(1)(264) = 1 radians/sec
dt 132 21132
1+ —
132
Step 1:

p = x-coordinate of plane’s position
x = x-coordinate of car’s position
s = distance from plane to car (line-of-sight)

Step 2:
At the instant in question,

dp . ds
=0,—=120mph, s =5mi, and — =—160 mph.
b dt P 8 dt P

Step 3:
We want to find —@.
dt
Step 4:
(x-p)Y+3* =5’
Step 5:
dx dp ds
2=p)| ——— [=25s—
x=p )( At di ) dr
Step 6:
Note that, at the instant in question,
x=+5"-3" =4mi.

2(4- O)(f; - 120) =2(5)-160)

S(dx— 120) =-1600
dt

% -120=-200
% =—-80mph
The car’s speed is 80 mph.
Step 1:

s = shadow length
6 = sun’s angle of elevation

Step 2:

At the instant in question,

s =60 ft and 2—? =0.27°/ min = 0.00157 radian/min.
Step 3:

We want to find —é.
dt

Step 4:

tan9=@ ors =80cotf
K

34.

Section 4.6

Step 5:

& g0esc?948
dt dt

Step 6:

Note that, at the moment in question, since tan

0 =& and0<0<E, wehavesin@=i and so
60 2 5

csch = é
4
d sY
D _ 80| 2| 0.00157)
d 4
12i
— 018757 L L2
min 1 ft
=_2.257 in./min
~—7.1in./min

d
Since d—s <0, the rate at which the shadow length is
t

decreasing is positive. The shadow length is decreasing at
the rate of approximately 7.1 in./min.

Step 1:

a = distance from origin to A

b= distance from origin to B

6 = angle shown in problem statement

Step 2:
At the instant in question, @ =-2m/ sec,% = 1 m/sec,
dt dt
a=10m, and b =20m.
Step 3:
We want to find ﬁ
dt

Step 4:
I;an0=g or6=tan”" a

b b
Step 5:

pda_ydb o db
a6 _ 1 dt dt _ _dt  dt

dr a2 »2 - 2+
1+ 2
b

Step 6:
i@ = —(20)(_2) —A0xD) = —0.1radian / sec
dt 102 +20°

= —5.73 degrees/sec

To the nearest degree, the angle is changing at the rate of
—6 degrees per second.

215
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35. Step 1:

0 b B
a = distance from O to A
b = distance from O to B
¢ = distance from A to B

Step 2:
At the instant in question, @ =5 nautical miles, b =3
nautical miles, @ =14 knots, and % =21 knots.
dt dt
Step 3:
We want to find @,
dt
Step 4:
Law of Cosines : ¢ =a” +b> —2ab cos120°
A =a*+b*+ab
Step 5:
ZCK = 2a@+2b@+a@+bdl
dt dt dt dt dt
Step 6:
Note that, at the instant in question,

c=~Na® +b +ab =\/(5)2+(3)2+(5)(3) =49 =7

2(7)% =2(5)14)+2(3)2D+(5)2D) +(3)(14)
t

— =29.5 knots
t

The ships are moving apart at a rate of 29.5 knots.

36. True. Since d£ = 277:£, a constant
dt dt

dr . dcC
— results in a constant —.
dt dt

37. False. Since A = 27rr£, the value of A depends on r.
dt dt dt

38.A. v=s

dv=3sds
24 =35%(2)
s=2in

39.E. sA=6s"
dsA =12sds
12 =12sds

1
ds =~
s

V=g
dV =3sds = 35> 1
s
24 =3s
s=8in

40.c. TE_d
ydt dt

06,_dy
0.8 dt
dy L. . . .
E =2.25, but it is negative because y is decreasing.
&
dt

=-2.25.

41.B. v=nur’h
SA=2nrh
dv=rmridh

dsA = 2mhdr
dv =dsA
wrldh = 2rhdr
dh_,dr
B2
2 _,dr
100 (1)?
dr=.01"2
seC

42. (a) @=i(x3—6x2+15x)
dt dt

=(3x> —12x+15)@
dt
=[3(2)> = 12(2) +15)(0.1)
=03
dr_ 4 9y=9% _90.1)=09
dr  dt dt
dp _dr _dc
dr dt dt

b Lo 62 P
dt dt X

= 3x2—12x—£ d—x
_x2 dt

=09-0.3=0.6

- [3(1.5)2 ~1201.5)— 14;](0.05)
=215625 '



42. Continued

dr d dx
b) —=—(70x)=70—=70(0.05)=3.5
()dz dt( x) " (0.05)

dap = ﬂ—ﬁ =3.5-(-1.5625)=5.0625
dt dt dt

43. (a) Note that the level of the coffee in the cone is not

needed until part (b).
Step 1:

V] = volume of coffee in pot

y = depth of coffee in pot
Step 2:

—1=10 in® / min
dt

Step 3:

We want to find the value of ?
t

Step 4:
Vi =9my
Step 5:

dv d
S 9nl

dt dt
Step 6:

d

10=97%

dt
dy = 10 = (0.354 in./min
dt 9m
The level in the pot is increasing at the rate of

approximately 0.354 in./min.
(b) Step 1:

V2 = volume of coffee in filter

r =radius of surface of coffee in filter
h = depth of coffee in filter

Step 2:
av, 3
At the instant in question, 7 =-10in" /min and
t
h=5in.
Step 3:
We want to find —ﬁ.
dt
Step 4:
Note that L é, SO r= ﬁ
h 6 2
3

Then V, = —mrth= ﬂ

12
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Step 5:
v, _zh® dn
dt 4 dt
Step 6:
2

_1o= 2O dh

4 dt
dh .
— =——1Iin./min
dt T

Note that % <0, so the rate at which the level is
1

falling is positive. The level in the come is falling at the

rate of 3 =~ (.509 in./min.
hY/4

44. Step 1:

Q =rate of CO2 exhalation (mL/min)

D = difference between CO, concentration in blood
pumped to the lungs and CO2 concentration in blood
returning from the lungs (mL/L)

y = cardiac output

Step 2:
At the instant in question, Q =233 mL/min, D =41 mL/L,
b __, (mL/L)/min, and 40 _ ) L/ min?.
dt dt
Step 3:
. dy
We want to find the value of d—
t
Step 4:
o
y=—
D
Step 5:
pdQ _,dD
dy __dt — dr
dt D?
Step 6:
dy _ (41)(0)-(233)-2) _ 466 = 0277 Limin>
dt 41)? 1681

The cardiac output is increasing at the rate of approximately

0.277 L/min™2.

45. (a) The point being plotted would correspond to a point on

the edge of the wheel as the wheel turns.

(b) One possible answer is @ = 167, where ¢ is in seconds.
(An arbitrary constant may be added to this expression,
and we have assumed counterclockwise motion.)
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45. Continued

(¢) In general, assuming counterclockwise motion:

d d . .
5 0090 = 2sine)(16m) = —3275in6
d dt
& = 20059@ =2(cosB)(16m)=32mcosO
d d
At0= T :

4
% =31 sin% = 167(+2) = ~71.086 fi/sec
D 307 cos™ = 167(42) = 71.086 f/sec
dt 4
Ato=".
2

P orsin™ = —327m = —100.531 fisec
dt 2

Q = 32n'cosﬁ =0 ft/sec

dt 2

AtO=r:

ﬂ =-32r sinmw =0 ft/sec

dt

dy

; =32m cost =-321 =—100.531 ft/sec
t

46. (a) One possible answer:
x=30cos6, y=40+30sin6

(b) Since the ferris wheel makes one revolution every
10 sec, we may let 6 =0.2z¢ and we may write
x=30co0s0.27t, y=40+30sin0.27z. (This assumes

that the ferris wheel revolves counterclockwise.)

In general:

% =-30(in0.27¢)(0.27) = —67 sin 0.27¢
% =30(cos0.271)(0.27) = 67 cos 0.2t
Atr=5:

@ =—6msinz =0 ft/sec
dt

% =6mcosm =6m(—1)=—18.850 ft/sec

Atr=8:

% =—67msinl.6mr =17.927 ft/sec

% =6mcosl.om =5.825 fi/sec

47. (a) Q =i(uv)=u@+v@
dt dt dt dt
= 1(0.05v) + v(0.04u)
= 0.09uv
= 0.09y

d
Since 2 = 0.09y, the rate of growth of total production

dt
is 9% per year.

(b) dy = i(uv) = uﬂ+ v—
dr dt dt dt
=u(0.03v)+ v(-0.02u)
=0.0luv
=0.01y

The total production is increasing at the rate of
1% per year.

Quick Quiz Sections 4.4-4.6

L. B. xn+1 = xn _&
f(x)
f(x)=x>+2x-1
Flo=3x*+2
_ W21
3% +2

3Y (3
2 +2| 2 -1
3 (5) (5]
=2- =0.465

=1

3
2 5

2.B. 2 =x"+y’

z=V42+3%2 =5

2z£ = 2xﬁ+2yﬂ
dt dt dt

5=4 3@ +3@
dt dt
dy_1

dt 3
dx:3dy23[1]:1
dr dt 3

3. A x(t)=70
y(t) =60t
2(t) = (601)? +70%)"2

% = %(3600;2 +4900)""%(7200¢)
t

dz _ 7200(4)
dr 2(3600(4)% +4900)"?

£= 57.6
dt

4. f)=vx
x=25
, 1 a2 1
25)=—(25 =—
res=ey" =

J26 =5+ L (26-25)=5.1
10



4. Continued

b)x  =x - SO iy = x2—26=0

"
2
s 92 g,
2(5)
© f=
x=3
, 1 23 1
27 =—(27 =—
ren=ents—

V26 =3+ (26-27)
27

V26 =2.963
Chapter 4 Review (pp. 256-260)
1 y=xv2-x
y= x{ : ](—1)+ ~2—xx)

22 —-x
_—x+2(2-x)

- 2N2—x

4-3x

2N2—-x

. . 4
The first derivative has a zero at —.
3

s

4
Critical point value: x = g y=—--=1.09

Endpoint values: x=-2 y=—4
x=2 y=0

The global maximum value is % atx = %, and the global

minimum value is —4 at x = -2.

2. Since y is a cubic function with a positive leading

coefficient, we have lim y=—cc and lim y = oo. There are
X—>—c0 X—>o0

no global extrema.

3y = (@) 26 )+ )2

=2 (—l+x)
x

26" (x=D)(x+1)

X

Intervals x<-1 -1<x<0 O<x<l1 x>1

Sign of y' - + - +

Behavior of y | Decreasing | Increasing | Decreasing | Increasing
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, d
T dx
= 2" (x4 D)+ (—x 4 x) (27 (<2x73)
= (261“2)()(2 +1+2x7=2x7%)

_ 261 (x*—x2+2)
x4
22 = 0.5 +1.75]

4
X

[2e1/"2 (=x"+x)]

The second derivative is always positive (where defined),
so the function is concave up for all x # 0.
Graphical support:

VIV

Minirmur
w=1

¥=2.7182818
[-4, 4] by [-1, 5]

(a) [-1, 0) and [1, o)

(b) (oo, —1] and (0, 1]
(©) (—e°, 0) and (0, <o)
(d) None

(e) Local (and absolute) minima at (1, ¢) and (-1, e)

(f) None

. Note that the domain of the function is [-2, 2].

y’=x[12J<—2x>+(V4—x2><l)
2

4-x
_ —x2+ 4- xz)
N
427
4—x*
Intervals —2<X<—\/5 - 2<x<\/§ \/§<x<2
Sign of y” _ + -
Behavior of y Decreasing Increasing Decreasing
(V= x? )= (4 - 26%)| — |20
” 2 V 4— x2
y = 2
4—-x
_ 2x(x2 -6)
(4- x2)3/2

Note that the values x = i\/g are not zeros of y” because
they fall outside of the domain.

Intervals 2<x<0 O0<x<2

Sign of y” + -

Behavior of y Concave up Concave down
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4. Continued

Graphical support:

y” — exfl

The second derivative is always positive, so the function is
concave up for all x.

Graphical support:
Haxirura \
#S1.4142136 |v=z
[-2.35,2.35] by [-3.5, 3.5] S
@ (V2,42 EE e
[—4, 4] by [-2, 4]
(b) [-2. —V2]and [V2, 2] @) [L. =)
(C) (_2’ O) (b) (_oo 1]
(@) (0,2)
() (=00, )
(e) Local maxima: (=2, 0), (+/2,2)
(d) None
Local minima: (2, 0), (_\E’ -2 (e) Local (and absolute) minimum at (1, 0)
Note that the extrema at x = ++/2 are also absolute (f) None
extrema. .
7. Note that the domain is (-1, 1).
(® (0,0 _
y=(1=x2)y
5.y =1-2x-4x° y':—l(l—xz)’5/4(—2x)=#
Using grapher techniques, the zero of y” isx = 0.385. 4 2(1-x2)"*
Intervals x<0.385 0.385 <x Intervals -1<x<0 O<x<l
Sign of y’ + - Sign of y - +
Behavior of y Increasing Decreasing Behavior of y | Decreasing | Increasing

y” =-2-12x* = -2(1+6x?)
The second derivative is always negative so the function is
concave down for all x.

Graphical support:

AN

Haxiraum /

#=.385458 Y=1.2148047
[~4, 4] by [4, 2]

(a) Approximately (—oo, 0.385]
(b) Approximately [0.385, o)

(¢) None
(d) (=00, 0)
(e) Local (and absolute) maximum at = (0.385, 1.215)
(f) None
6. y=¢""-1
Intervals x<1 1<x
Sign of y’ - +
Behavior of y Decreasing Increasing

>
4
4(1=x2)¥?
_(1=xH)"2-2x% +5x%]
4(1=x2)¥2
37 +2
4(1= 52
The second derivative is always positive, so the function is
concave up on its domain (-1, 1).

21— x4 (1) - (x)(Z)( J(l —xH)"(=2x)

y' =

Graphical support:

L

Hiniraura
H=0

V=1

[-1.3. 1.3] by [-1. 3]

(@ [0, 1)

(b) (-1, 0]

©-L1D

(d) None

(e) Local minimum at (0, 1)

(f) None



. = )() - (0)3x?) _ 2x% +1

8.y
(x*=1? (x*=1?
Intervals X< 2B e 1<x
Sign of y + - -
Behavior of y | Increasing Decreasing Decreasing

. (0 =DM6x)-2xX +D(2)(x’ =D (3x?)

o -p*
(7 =D(6x*) - (2x7 +1)(6x7)
(@ =1’
_ 6x> ()c3 +2)
=1’
Intervals | , o 213 | o3 ., .| O<x<l1 I<x
Sign of y” + - - +
Behavior | Concave Concave Concave Concave
of y up down down up

Graphical support:

L

Haximum
W==7937008 1V=5291337
[-4.7,4.7] by [-3.1, 3.1]

(a) (—o0, 27" ] = (=00, ~0.794]

b) [273, 1) = [-0.794, 1) and (1, o)
(©) (—o0, =273 ) = (=00, —1.260) and (1, )
d (=27, 1) = (-1.260, 1)

(e) Local minimum at

(—2“’3, % . 2‘”3) ~(=0.794, 0.529)

® (_21/3,; . 21/3)z (~1.260,0.420)

9. Note that the domain is [-1, 1].
, 1

g :_\jl—x2

Since y’ is negative on (=1, 1) and y is continuous, y is

decreasing on its domain [-1, 1].

y":i[—(l—xz)’l/z]
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Graphical support:

S

~

ST
~1.175, 1.175] by | =, 2
| Iy[ p 4]

(a) None
() [-1, 1]
(©(-1,0)
(d©, 1

(e) Local (and absolute) maximum at (-1, 7);
local (and absolute) minimum at (1, 0)

(o3
2

10. This problem can be solved graphically by using NDER to

obtain the graphs shown below.

’

y y f‘\
\/ -~

Haxiraura

%=1.7320508 Iy=.1830127

[=4, 4] by [-1, 0.3]
LA
.

FL1]
#=-z.cB4226 Iv=0
[-4, 4] by [-0.7, 0.8]

Z2eFo
#=-1.732081 [v=0
[-4, 4] by [-0.4, 0.6]

An alternative approach using a combination of algebraic
and graphical techniques follows. Note that the
denominator of y is always positive because it is equivalent

to (x+ 1)% +2.
Ve (2 +2x+3)1) = (xX2x +2)

(x?+2x+3)?
_ -x2+3
(x2 +2x+3)?

Intervals

x<—\/g — 3<x<\/g

Va<x

Sign of y - +

1 2.-3/2 x
=—(1-x7)"(2x)=——"—
2 (1_x2)3/2
Intervals -1<x<0 O<x<l
Sign of y” + -

Behavior of y Concave up Concave down

Behavior of y | Decreasing Increasing

Decreasing

e (2 +2x+3)2(=2x) = (=x2 +3X2)(x2 +2x +3)2x +2)

(x*+2x+3)*
(7 +2x+3)(=2x) — 2(2x + 2)~x” +3)

(x> +2x+3)°
_2x7—18x-12

()c2 +2x+ 3)3
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10. Continued (e) Local (and absolute) maxima at (—2, In 2) and (2, In 2)
Using graphing techniques, the zeros of 2x° —18x—12 (f) None
(and hence of y”) are at x =~—2.584, x = —0.706, 12y =3cos3x — 4sindx
and x = 3.290. Using graphing techniques, the zeros of y” in the domain
(-2.584, (=0.706, T
Intervals | (-0, -2.584) ~0706) | 3.290) (3.290, =) 0<x<2r are x = 0.176, x = 0.994, x = 5= 1.57,
- 3
Sign of B + B + x=2.148, and x = 2.965, x = 3.834, x = 2 x =5.591
Y 2
Behavior Concave Concave | Concave | Concave
of y down up down up ntervals | 0<<0176 (0176 <x<0.994 | 0994 <x< T | 7 <x < 214812148 <x<2.965
(@) [_\/g’ \/g] Sign of y’ + - + - +
(b) (—00, - \/g] and [\/g’ 00) Bel(::fn:or Increasing Decreasing Increasing Decreasing Increasing
(c) Approximately (-2.584, —0.706) and (3.290, o)

(d) Approximately (—eo, —=2.584) and (-0.706, 3.290) i i
Intervals | 2.965 <x<3.834 | 3834 <x<— | == <x<5591 | 5591 <x2x

(e) Local maximum at {\/g ,\/34_1] Sign of y’ - + - +

Behavior D . . . D . . .
ecreasin; ncreasin ecreasin; ncreasin
=(1.732,0.183); of y ¢ ¢ ¢ ¢

3= ” =-95sin 3x —16 cos 4x
local minimum at [—\/5 s i l] d

Using graphing techniques, the zeros of y” in the domain
0<x<2rmarex=0.542, x =1.266, x =1.876

= (-1.732,-0. ’ ’ ;
(71732, -0.683) x=2.600, x =3.425, x = 4.281, x = 5.144 and x = 6.000.

(F) ~(=2.584, —0.573), (~0.706, —0.338), and (3.290, 0.161)

Intervals [0 < x < 0.542(0.542 < x < 1.266[1.266 < x < 1.876(1.876 < x < 2.600|2.600 < x < 3.425

11. For x > 0, y'=i ln)c=l Signofy’| - + - + -
dx X

Behavior| Concave Concave Concave Concave Concave

1 of y down up down up down

Forx<0: y'= iln(—)c) = i(—1) =—
dx -X X

Thus y' = 1 for all x in the domain. Intervals [ 3.425 <x<4.281 | 4281 <x<5.144 | 5.144 <x<6.000 | 6.00<x<27
X
Sign of y” + - + -
Intervals (-2,0) ©,2)
Behavior Concave Concave Concave Concave
Slgn of yf _ + of y up down up down
Behavior of y Decreasing Increasing Graphical support:
” -2
The see A
The second derivative always negative, so the function is hl’-‘_/_ - J
concave down on each open interval of its domain. U ‘IJ
. Maximurm
Graphlcal support: W=2.9654497 V=1 ZBB06GL
T 97
—, = by [-2.5,2.5]
4’ 4

[-2.35,2.35] by [-3, 1.5]
(@) (0, 2]

(b) [-2,0)

(¢) None

(d) (-2, 0) and (0, 2)
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12. Continued B
. (@ |0, —
(a) A»pproxnnately [0, 0.176], \/g

0.994,’2’} [2.148,2.965], [3.834, 3;] and [5.591, 27:]

(b) (~e=, 0]and { o]
(b) Approximately [0.176, 0.994],

S

T 37 (©) (==, 0)
5’ 2.148 |, [2.965, 3.834], and 7,5.591 (@) (0, )
(¢) Approximately (0.542, 1.266), (1.876, 2.600), (e) Local maximum at| . —0 | = (1155, 3.079)
(3,425, 4.281), and (5.144, 6.000) \/g 3\/3
(d) Approximately (0, 0.542), (1.266, 1.876), (f) None. Note that there is no point of inflection
(2.600, 3.425), (4.281, 5.144), and (6000, 277) at x = 0 because the derivative is undefined and no
tangent line exists at this point.
(e) Local maxima at = (0.176,1.266), (ﬂ, O] 14.y' = -5x* +7x* +10x + 4
2 Using graphing techniques, the zeros
3 of y” are x =—0.578 and x =~ —1.692.
and (2.965, 1.266), PR 2|, and (2m, 1)
Intervals x <—-0.578 —0.578<x 1.692 < x
local minima at = (0, 1), (0.994, —0.513), <1.692
(2.148,-0.513), (3.834, —1.806), and (5.591, —1.806) Sign of y’ - + -
Note that the local ext (x=3834,x= " Behavior
ote that the local extrema at x = 3.854, x = 2’ of y Decreasing Increasing Decreasing
and x=15.591 are also extrema.
”=20x° +14x+1
() ~ (0.542, 0.437), (1.266, —0.267), (1.876, —0.267), " ==20x"+14x+10 »
(2.600, 0.437), (3.425, —0.329), (4.281, 0.120), Using graphing techniques, the zeros of y” is x = 1.079.
(5.144,0.120), and (6.000, ~0.329) Intervals x<1.079 1079 < x
Sign of y” + _
13 v = -, x<0 g. Y
Y 4-3x% x>0 Behavior of y Concave up Concave down
Intervals 2 2 Graphical support:
x<0 O<x<—= —=<x
SER G
Sign of - + - /\
le%a;lor Decreasing Increasing Decreasing oy Iv=20.51720¢
[~4, 4] by [-10, 25]
Yy’ = e, x>0 (a) Approximately [—0.578, 1.692]
—6x, x<0 .
(b) Approximately (—eo, —0.578] and [1.692, o)
Intervals x<0 O<x (c) Approximately (—eo, 1.079)
Sign of y” + — (d) Approximately (1.079, o)
Behavior of y Concave up Concave down (e) Local maximum at = (1.692, 20.517); local minimum

at=(-0.578, 0.972)
Graphical support: ® =(1.079, 13.601)

W

§:15‘1?0I.'I5 V=3.079201Y
[—4, 4] by [-2, 4]

=
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15.y=2x% = x5
’—§x_”5 _2x4/5 _ 8-9x

s 5 5Ux

Intervals x<0 O<x<§ §<x
9 9
Sign of y’ - + -
le%a;lor Decreasing Increasing Decreasing
V= _8 s 36 ys_4Q2 +35X)
25 25 25x
2
Intervals xX<—— —§<x<0 O<x
Sign of y” + - -
Behavior Concave Concave Concave
of y up down down
Graphical support:
\r‘*‘\
Haxiraura
#=.BBBBERS _|v=1.0111963

(4, 4] by [-3, 3]

8
w03

8
(b) (—o0,0]and [9, o)

o)
9

d) (—5, o] and (0, o)

(e) Local maximum

4/5
at §, 10 . § =~ (0.889, 1.011); local minimum
99 9

at (0, 0)

16. We use a combination of analytic and grapher techniques to

solve this problem. Depending on the viewing windows
chosen, graphs obtained using NDER may exhibit

strange behavior near x = 2 because, for example,

NDER (y, 2) = 5,000,000 while y” is actually undefined at

5—dx+4x* —x°
x=2

x=2. The graph of y= is shown below.

EggggT;ESI V=2 417 34E
[-5.875, 5.875] by [-50, 30]
, (x=2)(=4+8x-3x7)— (5—4x+4x” —x*)(1)
T (x-27
—2x% +10x% = 16x+3
(x-2)*
The graph of y’ is shown below.

I

[-5.875, 5.875] by [-50, 30]
The zero of y" is x = 0.215.

Intervals x<0.215 0215<x<2 2<x
Sign of y’ + - -
Behavior Increasing Decreasing Decreasing
of y
(x=2)%(=6x% +20x —16) — (=2x° +10x* —16x+3)
" (2Xx-2)
y'= ’
(x=2%)
_ (x=2)(=6x" +20x—16) = 2(-2x" +10x”° — 16x +3)
(x-2)°
_=2(x —6x +12x—13)

(x=2)°
The graph of y” is shown below.

Zera
H=E.70887E9 V=0

[-5.875, 5.875] by [-20, 20]

——————————

The zero of x° — 6x% +12x—13 (and hence of y’)is
x=3.710.

Intervals x<2 2<x<3.710 3710< x
Sign of y” - N _
Behavior of y | Concave down Concave up Concave
down




16. Continued
(a) Approximately (—eo, 0.215]
(b) Approximately [0.215, 2) and (2, o)
(c) Approximately (2, 3.710)
(d) (—oo, 2) and approximately (3.710, o)
(e) Local maximum at = (0.215, -2.417)
(f) = (3.710, -3.420)

17.y = 6(x +1)(x—2)°

Intervals x<-1 -1<x<2 2<x
Sign of y” - + +
Behavior . . .
Decreasing Increasing Increasing
of y
¥ =6(x +1)(2) (x —2) +6(x —2)*(1)
=6(x-2)2x+2)+(x=2)]
=18x(x—-2)
Intervals x<0 O<x<?2 2<x
Sign of y” + - +
Behavior Concave Concave Concave
of y up down up

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x = —1.

(¢) There are points of inflection at x = 0 and at x =2.

18. y'=6(x+1)(x—-2)

Intervals x<-1 -l1<x<2 2<x
Sign of y’ + - +
Behavior . . .
Increasing Decreasing Increasing
of y
” d 2
y'=—6(x"—-x-2)=6(2x—-1)
dx
1 1
Intervals x<— —<x
2 2
Sign of y” - +
Behavior of y Concave down Concave up

(a) There is a local maximum at x = —1.
(b) There is a local maximum at x = 2.

1
(c) There is a point of inflection at x = 5

Chapter 4 Review

19. Since 4 —lx_4—e_x =xO4e",
dx\ 4
1 —4 -x
f(x)=—1x —e " +C.

20. Since disecx =secxtanx, f(x)=secx+C.
X

21. Since i 2lnx+1x3+x =2+x2+1,
dx 3 X

1
f(x)=21nx+§x3+x+C.

22. Since i g)cy2 +2x"2 | = \/;+L,
dx\ 3

Jx

fx)= %x” +2x"2 4+ C.

23. f(x)=—cosx+sinx+C

f(m)=3

1+0+C=3

Cc=2
f(x)=—cosx+sinx+2

24, f(x):§x4/3+lx3+lx2+x+C
4 3 2
f=0
§+l+l+1+c=0
4 3 2
31

12
3 15 1, 31
=Pt
fay=x gy

C=

25. v(t)=s"(1)=9.8t+5

s(t)=4.92 +5t+C
s(0)=10
Cc=10

s(£)=4.92 +5t+10

26. a()=v'(1)=32

w(t)=32t+C,
v(0)=20

C,=20
v(t)=s"(r)=32t+20
s() = 161> +20t+C,
s(0)=5

C,=5
s()=1612 +201+5

225
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27. f(x)=tanx
F/(x)=sec? x

] )
H[zé):jf[g‘](“ﬂ}

=2x+ 21
2

28. f(x)=secx
f/(x)=secxtanx

G

BN
o)

=\2x-22 4
4
1
1+tanx
F(x)=—(1+ tan x) % (sec? x)
1

cos’ x(1+tan )c)2
1

(cosx+ sinx)2

L(x)= f(0)+ f'(0Xx—0)
=1-1(x-0)
=—x+1

29. f(x)=

30. f(x)=e" +sinx
f/(x)=e" +cosx
L(x)= f(0)+ f"(0)Xx—0)
=1+2(x-0)
=2x+1

31. The global minimum value of % occurs at x = 2.

32. (a) The values of y” and y” are both negative where the
graph is decreasing and concave down, at 7.

(b) The value of y’ is negative and the value of y” is
positive where the graph is decreasing and concave up,
at P.

33. (a) The function is increasing on the interval (0, 2].

(b) The function is decreasing on the interval [—3, 0).

(c¢) The local extreme values occur only at the endpoints of
the domain. A local maximum value of 1 occurs at
x =-13, and a local maximum value of 3 occurs at

x=2.

34. The 24th day

35. y
2+
A ! ! Ly
3 \ 3
\j#’(x)
3+

36. (a) We know that fis decreasing on [0, 1] and increasing on
[1, 3], the absolute minimum value occurs at x =1 and
the absolute maximum value occurs at an endpoint.
Since f(0) =0, f(1)=-2, and f(3) =3, the absolute
minimum value is —2 at x = 1 and the absolute
maximum value is 3 at x = 3.

(b) The concavity of the graph does not change. There are
no points of inflection.
(©) y
3k

3}

37.(a) f(x) is continuous on [0. 5, 3] and differentiable
on (0. 5, 3).

1
X

(b) f'(x)= (X)( )+(1nx)(1) =1+Inx

Using a=0.5 and b=3, we solve as follows.

. f(3)=f(0.5)
FO="3"0s
3n3-0.50.5
l4Inc= 2227 0-0In0>
25
33
)
Inc= : -1
25

Ine=0.41n(27v2) 1
c= 6_1(27\/5)0'4
c=e'31458 =1.579

(¢) The slope of the line is

m= f&)=f@ = 0.41n(27\/5)0.2 In 1458, and the line

b—a
passes through (3, 3 In 3). Its equation is
y =0.2(In1458) (x — 3) + 3 In3, or approximately

y=1.457x-1.075.



37. Continued

(d) The slope of the line is m = 0.21In1458, and the line
passes through
(c, f(e)) = (e 1458, 7! Y1458(~1+0.2 In 1458))
=(1.579, 0.722).
Its equation is
y=0.2(0n1458)(x —c)+ f(c),
y=0.21n1458(x —e'Y/1458)

+e 7' Y1458 (=1+ 0.2 1n 1458),

y=0.2(n1458)x —e"'3/1458,
or approximately y=1.457x—-1.579.

38.(a) v(1)=s"(t)=4—6t-31
(b) a(r)=v'(t)=-6—-06¢t
(c¢) The particle starts at position 3 moving in the positive
direction, but decelerating. At approximately
t=0.528, it reaches position 4.128 and changes
direction, beginning to move in the negative direction.

After that, it continues to accelerate while moving in the

negative direction.
39.(a) L(x)= f(0)+ f’(0Xx—0)
=-1+0(x-0)=-1
(b) f(0.)=LO.1)=-1
(c) Greater than the approximation in (b), since f'(x) is

actually positive over the interval (0, 0.1) and the
estimate is based on the derivative being 0.

40. (a) Since Z—y = (2 =)+ (e )20+ (2x—x)e ™,
X

dy=(2x—x>)e " dx.

(b) dy=[2(1)—(1)* ("' X0.01)
=0.01¢”!
=(0.00368
1633001.59

41. (a) With some rounding, y=————
1417.47 17006378

(b)

[0, 80] by [0, 1600000]

y= 1633001.59 +829,210=2,305,337

1417.471 700637860
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(d) Using the Second Derivative, we find the maximum rate
of growth about 1885. We find a point of inflection
here, which shows the begining of a decline in the rate
of growth.

(e) y= 1633001.59 = 2,462,000, which is the

1417.471 009378

approxiate maximum population.

(f) There are many possible causes. Advances in
transportation began drawing the population southward
after 1920, and Tennessee was well-situated
grographically to become a crossroads of river, railroad,
and automobile routes. By the year 2000 there had been
numerous other demographic changes. It should be
pointed out that the census years in the data
(1850-1910) include the years of the Civil War and
Reconstruction, so the regression is based on unusual
data.

42. f(x)=2cosx—V1+x

f/(x)=-2sinx—

2V1+x

flx,)
xn+1 xn_ ’
F1x)
ZCosxn—,/1+xn
' —2sinx —;
"2 flex

The graph of y = f (x) shows that f(x) = 0 has one solution,
near x = 1.

A~

[-2. 10] by [-6. 2]

1

=0.8361848
= (0.8283814
x, =0.8283608
x, ~0.8283608

Solution: x = 0.828361

43. Let f represent time in seconds, where the rocket lifts off
att=0. Since a(t)=v’(t)=20, m/sec’ and
v(0) =0 m/ sec, we have v(¢) = 20¢, and so
v(60) =1200 m/sec. The speed after 1 minute (60 seconds)
will be 1200 m/sec.

X
X,

1
2
3
4
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44.

45.

46.

47.

Let ¢ represent time in seconds, where the rock is blasted
upward at 1= 0. Since a(t) = v'(t) = —3.72 m/sec % and
v(0) =93 m/sec, we have v(r)=-3.72t+93. Since
s’(t) =-3.72t+ 93 and s(0) = 0, we have
s(t) = —=1.86t* +93t. Solving v(t) = 0, we find that the rock
attains its maximum height at = 25 sec and its height at
that time is $(25)=1162.5 m.
Note that s =100—2r and the sector area is given by

s

A=mr? [2) = %rs = %r(IOO— 2r)=50r— 2. To find
r

the domain of A(r)=50r— 2, note that r >0 and
L 50 .
0<s<2xr, which gives 12.1= ——<r <50. Since
T+1
A'(r) =50-2r, the critical point occurs at r =25. This

value is in the domain and corresponds to the maximum
area because A”(r)=-2, which is negative for all r. The

greatest area is attained when r =25 ft and s =50 ft.

y
27
i (x, 27 —x2)
l _;‘ 1 1 1 - 1 1 1 i \ X
For 0 <x <+/27, the triangle with vertices at (0, 0) and

(£x, 27 — x*) has an area given by
A(x)= %(2)6)(27 —x?)=27x—x. Since

A’ =27-3x* =3(3—x)3+x) and A” = —6x, the critical
point in the interval (0, 4/27) occurs at x = 3 and

corresponds to the maximum area because A”(x) is

negative in this interval. The largest possible area
is A(3) = 54 square units.

If the dimensions are x ft by x ft by 4 ft, then the total
amount of steel used is x2 +4xh ft°. Therefore,
108 — x*

4x

x> +4xh =108 and so h = . The volume is given

_ 108x— %

by V(x)=x*h= =27x-0.25x>. Then

V/(x)=27—-0.75x2 = 0.75(6 + x)(6— x) and
V”(x)=—1.5x. The critical point occurs at x = 6, and it

corresponds to the maximum volume because V”(x) <0
2

=3ft. The

for x > 0. The corresponding height is

base measures 6 ft by 6 ft, and the height is 3 ft.

48.

49.

50.

If the dimensions are x ft by x ft by 4 ft, then we have

32
x*h=32 andso h= - Neglecting the quarter-inch
X

thickness of the steel, the area of the steel used is

128
A(x)= x? +4xh=x>+—=. We can minimize the weight
X

of the vat by minimizing this quantity. Now

A0 =2x-128¢7 = 2 (¢ - 4) and

X

A”(x)=2+256x">. The critical point occurs at x = 4 and
corresponds to the minimum possible area because

32
A”(x) >0 for x > 0. The corresponding height is — =21t
4

The base should measure 4 ft by 4 ft, and the height should
be 2 ft.

nY n

We haver? +| = :3,sor2= 3——. We wish to
2 4

minimize the cylinder’s volume

02 3
V=7rr2h=ﬂ(3—4]h=3ﬂh—n4 for0<h<2\/§.

2
_3zh %”(uh)(z—h) and

Since d—V =3r
dh

2
v = —ﬂ, the critical point occurs at h=2 and it
dn’ 2

2

corresponds to the maximum value because — < 0 for
dh

2
h > 0. The corresponding value of ris 3—% = \/5 The

largest possible cylinder has height 2 and radius \/5

Note that, from similar cones, é = %, so h=12-2r.

The volume of the smaller cone is given by

V:%n’rzhzéﬂ'rz(lz—Q,r):“-ﬂ'rZ —2?”15 forO<r<6.

dav
Then d— =8mr—2mr’ = 2rr(4—r), so the critical point
r

occurs at r = 4. This critical point corresponds to the

maximum volume because dd—v >0 for 0<r<4 and
r

(ij—v< 0 for 4 <r<6. The smaller cone has the largest

r
possible value when r =4 ft and 1 =4 ft.



51. T
Lid
T e
X
N
10 in. 1 1
1 Base 1
1 1
r—t-----------------
X
J-I—Jc —x—
-+ '} 15 in. i

(@) V(x)=x(15-2x)5-x)

(b, ¢) Domain: 0 <x< 5

Haxipurm
H=1.9618720 Y=@&.0i9119

The maximum volume is approximately 66.019
and it occurs when x =1.962 in.

(d) Note that V(x)=2x>—25x* +75x,

so V’(x)=6x> —50x+75.
Solving V’(x)=0, we have
L S0£(=50)° ~4(6X75) _ 50£+/700
2(6) 12
_50%10V7 25457
o2 6
These solutions are approximately x=1.962 and x =6.371,

so the critical point in the appropriate domain occurs at

25-5\7
sz‘

52. y
10T

(x,8 cos 0.3x)

1 L1 L1 1 X
—2p/ -p p \2p

5
F0r0<x<?ﬂ,the area of the rectangle is given by

A(x)=(2x)8cos 0.3x) =16xcos0.3x.
Then A’(x) =16x(—0.3 sin 0.3x)+ 16(cos 0.3x)(1)
=16(cos 0.3x—0.3x sin 0.3x)
Solving A’(x)=0 graphically, we find that the critical

point occurs at x =2.868 and the corresponding area is
approximately 29.925 square units.
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53. The cost (in thousands of dollars) is given by
C(x) = 40x +30(20 — y) = 40x + 600 — 30V x* — 144,

30
W x2—144

Solving C’(x)=0, we have:
30x
Vx? - 144

3x=4x? 144
9x? =16x* - 2304
2304 = 7x?

(2x) = 40 — —0%__
x? —144.

Then C’(x)=40-

=40

Choose the positive solution:

x=+ﬁs18.142 mi

J7
y=Vx?-12% = % ~13.607 mi

7

54. The length of the track is given by 2x+27zr, so we have
2x+2nr =400 and therefore x = 200 —zr. Then the area
of the rectangle is

A(r)=2rx
=2r(200—-77)
=400r — 2772, for0 <r <200
T

Therefore, A’(r) =400 —47xr and A”(r) = —4n, so the

.. . 100 .
critical point occurs at ¥ =—— m and this point
T

corresponds to the maximum rectangle area because
A”(r)<0 forall r.

The corresponding value of x is

x=200-7 100 =100 m.
T
The rectangle will have the largest possible area when
x=100 m and r=@m.
T

55. Assume the profit is k dollars per hundred grade B tires and
2k dollars per hundred grade A tires.

Then the profit is given by

P(x) = 2kr + & » 207102
—X
:2k.(20—5x)+x(5—x)
25—x
:2k.20—x
5—-x
— p— p— p— 2 p—
Py = 2k D=0 D)
(5-x)
2
:2k.x le-i2-20
(5-x)
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55. Continued

The solutions of P’(x) =0 are

10+ +/(-10)> — 4(1)(20
X= ( ) (Y =5i\/§, so the solution in the

2(1)

appropriate domain is x =5— \/g =2.76.
Check the profit for the critical point and endpoints:
Critical point: x=2.76 P(x)=11.06k
End points: x=0 P(x)=8k

x=4 P(x)=8k
The highest profit is obtained when x = 2.76 and y = 5.53,
which corresponds to 276 grade A tires and 553 grade B
tires.

56. (a) The distance between the particles is | f(#)| where

f(t)=—cost+ cos[r+ZJ. Then

P g E
f'(t)=sint sm[z+4]

Solving f”(t) = 0 graphically, we obtain ¢ = 1.178,
t=4.230, and so on.

ZRFo
W=1.1780872 V=0
[0, 277] by [-2, 2]

Alternatively, f(f) = 0 may be solved analytically as
follows.

, . T\ w . T\ 7w
n= +—-=1- t+=+=
f@ sm[( 8) 8] sm|:( 8) 8]
. /4 /4 T). @
=|sin| 7+ = [cos——cos| r+ = [sin—
ol oo+ FJn
. T b4 ). T
—|sin| t+— |cos—+cos| t+— [sin—
{5+ FJn

. T T
=-2sin—cos| t+— |,
8 8
so the critical points occcur when

cos(t + Z] =0,ort= %%— km. At each of these values,

f= '_FZCOS% ~%(.765 units, so the maximum

distance between the particles is 0.765 units.

(b) Solving cost = cos(z + ZJ graphically, we obtain

t=2.749, t = 5.890, and so on.

NNZ
e

Intersection
H=z.P4BE926 Y=-.92:BP9E

[0, 277] by [-2, 2]

Alternatively, this problem may be solved analytically

as follows.
T
cost=cos| t+—

) ® T\ w
cos||t+—= |—=|=cos||t+= |+=
(o35 {5
T T T). w T T
cos| t+— |cos—+sin| t+— |sin— = cos| r+—= [cos—
e G e G
. T). T
—sin| t+— [sin—
(5 )ns
2sin t+z sinzzo
8 8
sin(t+ﬂ):0
8

z=7—ﬂ+kn'
8

7
The particles collide when = ?ﬂ = 2.749 (plus multiples

of rif they keep going.)

57. The dimensions will be x in. by 10 — 2x in. by 16 — 2x in.,
$0 V(x) = x(10 = 2x)(16 — 2x) = 4x> — 52x% + 160x for
0<x<5.

Then V' (x) = 12x% — 104x + 160 = 4(x — 2)(3x — 20), so the
critical point in the correct domain is x = 2.

This critical point corresponds to the maximum possible
volume because V' (x) >0 for 0 < x <2 and V’(x) < 0 for

2 <x < 5. The box of largest volume has a height of 2 in.
and a base measuring 6 in. by 12 in., and its volume is

1441in*-

Graphical support:
Haximum
H=e =14y

[0, 5] by [-40, 160]



58.

59.

Step 1:
r = radius of circle
A = area of circle

Step 2:

. . . dr 2
At the instant in question, — =——m/sec and r =10 m.

dt b4

Step 3:

We want to find d—A
dt

Step 4:
A=mr?

Step 5:

dA dr

—=2rnr—
dt dt

Step 6:
A =2r(10) _2 =—-40
dt T

The area is changing at the rate of —40 m?/sec.

Step 1:

x = x-coordinate of particle

y = y-coordinate of particle

D = distance from origin to particle

Step 2:
At the instant in question, x=5m, y =12 m,

ax =-1m/sec, and dy =—5m/sec.

dt dt
Step 3:
We want to find d—D

dt
Step 4:
D:\lx2+y2
Step 5:

dx Ay

0 _ 1 de o dv)_Tar
— = 2x—+2y— |=
dt 2 /x2+y2 dt dt x2+y2
Step 6:

dD _ (5)(=D)+(12)(=5) _
dt V52 +122

. daD . . Lo
Since d— is negative, the particle is approaching the
t

origin at the positive rate of 5 m/sec.

—5m/sec
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60. Step 1:

61.

x = edge of length of cube
V = volume of cube
Step 2:

At the instant in question,

‘;—‘: =1200 cm>/min and x = 20 cm.

Step 3:
We want to find d—x
dt
Step 4:
V=yx’
Step 5:
av d.
=342 @
dt dt
Step 6:
d.
1200 = 3(20)> &£
dt
dx =1 cm/min
dt
The edge length is increasing at the rate of 1 cm/min.
Step 1:

x = x-coordinate of point
y = y-coordinate of point
D = distance from origin to point

Step 2:

231

. . . dD .
At the instant in question, x =3 and — =11 units per sec.

dt
Step 3:

We want to find d—x
dt

Step 4:

Since D* = x*+ y2 andy = x3/2, we have

D=+x*+x> forx>0.

Step 5:

dD 1 5. dx

e (2x+3:H)=

dr 2\jx2+x3( )dt
2x+3x% dx  3x+2 dx

Toxlltx di 2lex di
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61. Continued Step 3:
Step 6: We want to find ﬁ
1= 33)+2dx dr
) \/Z dt Step 4:
dx 4 it s=r0
- units per sec Step 5:
. . . ds do
) h 10 . 5r 2 Since r is essentially constant, — =r—
62. (a) Since —=—, we may write h=— orr=—. dt dt
ro 4 2 5 Step 6:
(b) Step 1: de
h = depth of water in tank 6= 1'2;
r = radius of surface of water 2] .
. — =5 radians/sec
V = volume of water in tank dt
Step 2: The spool is turning at the rate of 5 radians per second.
At the instant in question,
64. a(t)=v'(t) = —g = 32 fi/sec’
4V S /min and h=6 i aA)=vin=-g 5
dt Since v(0) = 32 fifsec, v(t) = s"(r) = =321 +32.
Step 3: Since s(0)=—17 ft, s(r) = —16¢* + 32t —17.
We want to find — dh ) The shovelful of dirt reaches its maximum height when
dt v(t)=0, atr=1sec. Since s(1) =—1, the shovelful of dirt is
Step 4: still below ground level at this time. There was not enough

speed to get the dirt out of the hole. Duck!

3 75 65. We have V = 17rr2h, s0 v _ g7rrh and dV = E7rrh dr.
3 dr 3 3
Step 5: When the radius changes from a to a + dr, the volume
v _ 4 2 dh 2
E - g” E change is approximately dV = gﬂ'ah dr.
Step 6: 66. (a) Let x = edge of length of cube and S = surface area of
4 > dh
—5=—n(6)"— cube. Then S =6x2, which means d—S =12x and
25 dt dx
dh 125 .
E == 1447 ==0.276 f/min dS =12x dx. We want ‘dS‘ <0.02S8, which gives

dh 2
Since — is negative, the water level is dropping at the ‘12x dx ‘ <0.02(6x7) or ‘dx ‘ < 0.0Lx. The edge should be

dt
positive rate of =0.276 ft/min.

measured with an error of no more than 1%.

63. Step 1: (b) Let V = volume of cube. Then V = x3, which means
r =radius (?f outer layer of cable on the spool dav —3x2 and dV = 3x%dx. We have ‘dx‘ <0.0lx,
6 = clockwise angle turned by spool dx

s =length of cable that has been unwound which means |3x2dx| < 3x%(0.01x) = 0.03V,

Step 2:
SO ‘dV‘ <0.03V. The volume calculation will be

. . . ds
At the instant in question, — =6 ft/sec and r=1.2 ft Lo .
dt accurate to within approximately 3% of the correct

volume.



67. Let C = circumference, r = radius, S = surface area, and
V = volume.

(a) Since C =27mr, we have dd—c =2m and so dC =27 dr.
r

dr
— <

r

0.4cm

10cm

_|ondr|
_‘ 27r ‘

dc

C

calculated radius will be within approximately 4% of
the correct radius.

=0.04 The

Therefore,

(b) Since S = 47rr2, we have Z—S =8nr and so
r

dS =8nr dr. Therefore,
d7s 8nr dr| |2 dr

S Az’ r

<2(0.04)=0.08. The

calculated surface area will be within approximately 8%

of the correct surface area.

4 dav
(c¢) Since V = fn'r3, we have — =47 and so

dr
dV = 4xr? dr. Therefore
Axr? dr
dv| |—/——— |3d
STy =7 <3000 =012
\% —r r
3

The calculated volume will be within approximately
12% of the correct volume.

+20
68. By similar triangles, we haveg = aT, which gives

ah= 6a+120,0r h =6+120a"" The height of the lamp

post is approximately 6+120(15)"" = 14 ft. The estimated

error in measuring a was

‘da‘ <lin. = i ft. Since @ = —120a72, we have
12 da

‘dh‘:‘—lZOa"z dal <120052| L |= 2 f 50 the
12) 45

2 8 .
estimated possible error is iE ft or £ — in.

69. Z—y =2sin x cos x — 3. Since sin x and cos x are both
Ix

between land —1, the value of 2 sin x cos x is never greater

than 2. Therefore, Z’—y <2 —3=-1 for all values of x.
x

. dy . . .
Since < s always negative, the function decreases on
dx

every interval.
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70. (a) f has a relative maximum at x = —2. This is where
f’(x)=0, causing f’ to go from positive to negative.

(b) fhas a relative minimum at x = 0. This is where
f’(x)=0, causing f’ to go from negative to positive.

(¢) The graph of fis concave up on (-1, 1) and on (2, 3).
These are the intervals on which the derivatives of fare

increasing.
(d Y
| L I I N
-3 3
71.(a) A=nr’
d—? =27rdr
)
A _pr| L]=2 g0
dt 3 3 sec
(b) dA=dV
4 1
—r=—nr’dh
3 3
da=tryran
3 3
dh _ in.
dt  sec
4
dA 3" 4 in?
(© =3 =g
dh 1 3 in.
72.(a) 2a+4b=60
b=15-2a
V=rna’b=mna*(15-2a)
2
W 30mq-
da
2
L
a=20
2(20)+4b =60
b=5
(b) The sign graph for the derivative Z—V = 3n'Ta(ZO —a) on
a
the interval (0,30) is as follows:
+ —
I -
0 20 30

By the First Derivative Test, there is a maximum at
x=20.



