9-1 day 7 Power Series

Learning Objectives:

I can identify the function that a power series models

I can write a power series that models a given function

I can use integration and differentiation to determine the power series of a function given the power series of another function

I can determine the radius and interval of convergence of a power series

Power Series

An expression of the form
$\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{n} x^{n}+\ldots$
is a Power Series centered at $\mathrm{x}=0$.

An expression of the form
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots+c_{n}(x-a)^{n}+\ldots$
is a Power Series centered at $\mathrm{x}=\mathrm{a}$.

$$
\begin{aligned}
& \text { (1) } \frac{1}{1+x}=\frac{1}{1-(-x)} \\
& 1+-x+x^{2}+x^{3}+x^{4}+\cdots \\
& \sum_{n=1}^{\infty}(-x)^{n}
\end{aligned}
$$

(a.)

$$
\begin{aligned}
& \frac{x}{1-(-x)}=x-x^{2}+x^{3}-x^{4}+\cdots \\
& \sum_{n=1}^{\infty}-(-x)^{n}
\end{aligned}
$$

(3.)

$$
\frac{1}{1-2 x} \quad \sum_{n=0}^{\infty}(2 x)^{n}
$$

(4.)

$$
\begin{aligned}
& \text { 4.) } \frac{1}{x} \Rightarrow \frac{1}{1-(-x+1)} \quad \begin{array}{l}
a_{1}=1 \\
1+(-x+1)+(-x+1)^{2}+(-x+1)^{3}+\cdots \\
\sum_{n=0}^{\infty}(-x+1)^{n}
\end{array}
\end{aligned}
$$

(5.) $\frac{1 / 3}{1-(-x+1)}$

$$
a_{1}=1 / 3
$$

$$
r=(-x+1)
$$

$$
\frac{1}{3}+\frac{1}{3}(-x+1)+\frac{1}{3}(-x+1)^{2}+\frac{1}{3}(-x+1)^{3}+\cdots
$$

$$
\sum_{n=0}^{\infty} \frac{1}{3}(-x+1)^{n}
$$

ExT. Give
a.) Differentiate bo
another function.

$$
\begin{aligned}
& (1-x)^{-1} \\
& -\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\ldots .
\end{aligned}
$$

normal float auto real radian mp
Plot Plot Plot
$\cdots Y_{1}-2 X+3 X^{2}+4 X^{3}+5 X^{4}$

- NY 2 日1 $/(1-X)^{2}$
- -NY $_{3}=$
- NY $Y_{4}=$
- NY $_{5}=$
- NY $_{6}=$
- \Yo=
normal float auto real radian mp

b.) Integrate both sides to find the power series for another function.

normal float auto real radian mp
normal float auto real radian mp
Plot Plot Plot 3
■ $\backslash Y_{1}$ EX $+1 / 2 X^{2}+1 / 3 X^{3}+1 / 4 X^{4}+1 /$
- NY $_{2}$ 日1 $/(1-X)$
- $\ Y_{3}=$
- NY $_{4}=$
- NY $_{5}=$
- NY $_{6}=$
- NYc=
- NY $_{8=}=$

In Groups, do exploration \#2 on page

NORMAL FLOAT AUTO REAL RADIAN MP
Plot Plot 2 Plot
$\cdots \backslash Y_{1}-X^{2}+X^{4}-X^{6}+X^{8}-X^{16}+X^{12}$

- NY 2 $^{\left(1 /\left(1+X^{2}\right)\right.}$
- $\ Y_{3}=$
- ${ }^{-1} Y_{4}=$
- $\ Y_{5}=$
$-\backslash Y_{6}=$
- NY $_{7=}=$

NORMAL FLOAT AUTO REAL RADIAN MP

$$
x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+-\frac{1}{7} x^{7}+\frac{1}{9} x^{9}+\cdots
$$

Normal float auto real radian mp
NORMAL FLOAT AUTO REAL RADIAN MP
Plot 1 Plot Plot
NY,
$\square \backslash Y_{1} \square X-1 / 3 X^{3}+1 / 5 X^{5}-1 / 7 X^{7}$

- $\ Y_{3}=$
- NY $_{4}=$
- NY $5=$
$-Y_{6}=$
- $\backslash Y_{7}=$

In Groups, do exploration \#3 on page

 480 (do \#1-3, 6, 7)$$
f(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \cdot
$$

$$
f^{\prime}(x)=1+\frac{2}{2!} x+\frac{3}{3!} x^{2}+\frac{4}{4!} x^{3}+.
$$

$$
f^{\prime}(x)=1+\frac{21}{6 \cdot} x+\frac{13}{4} x^{2}+4 x^{3} \ldots
$$

$$
f^{\prime}(x)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots \cdot
$$

normal float auto real radian mp
normal float auto real radian mp

Homework

Pg 481 \# 21-34,
69-71

