9-2 Taylor Series Learning Objectives:

I can construct a Taylor (or MacLaurin) series that models a given function

Given the Taylor Series for a function(s), I can write the Taylor series for a other functions that are compositions or products of those function.

In Groups, do exploration \#1 on page 484

Ex1. Given the function $f(x)=\cos (x)$

a.) Write a tangent line approximation for $f(x)=\cos (x)$ at $x=0$.
$f(x)=\cos x \quad y-y_{1}=m\left(x-x_{1}\right)$

$f^{\prime}(x)=-\sin x$
$f(0)=\sin (0)=0$

normal float auto real radian mp [

Taylor Series centered at $\mathrm{x}=0$

Let $f(x)$ be a function with derivatives of all order throughout some open interval containing 0 , then the Taylor Series generated by $f(x)$ at $x=0$ is:
$\frac{f(0)}{0!}+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{n}(0)}{n!} x^{n}+\ldots$

The partial sum:
$P_{N}(x)=\sum_{k=0}^{n} \frac{f^{k}(0)}{k!} x^{k}=\frac{f(0)}{0!}+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{n}(0)}{n!} x^{n}$

Is called the nth degree Taylor Polynomial centered at $\mathrm{x}=0$.

Ex2. Generate the $11^{\text {th }}$ degree Taylor Polynomial for $f(x)=1 / 2 \sin (x)+1$ centered at $x=0$

$$
\begin{array}{ll}
f(x)=1 / 2 \sin x+1 & f(0)=1 \\
f^{\prime}(x)=1 / 2 \cos x & f^{\prime}(0)=1 / 2 \\
f^{\prime \prime}(x)=-1 / 2 \sin x & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-1 / 2 \cos x & f^{\prime \prime \prime}(0)=-1 / 2 \\
f^{\text {II }}(x)=1 / 2 \sin x & f^{\prime \prime \prime}(0)=0 \\
f^{\text {II }}(x)=1 / 2 \cos x & f^{\text {II }}(0)=1 / 2 \\
f^{\text {III }}(x)=-1 / 2 \sin x & f^{\text {III }}(0)=0 \\
f_{\text {III }}(x)=-1 / 2 \cos x & f^{\text {III }}(0)=-1 / 2
\end{array} \quad \text { graph } f(x)=(1 / 0)
$$

Graph the function and the Taylor Polynomial

Gut instinct－what do you think is the interval of convergence？

Plot1 Plot2 Plot3
■ $\backslash Y_{1} \mathrm{~B}_{1} / 2 \sin (X)+1$
－ YY2 $^{\text {日 }} 1$
－$\ Y_{3} \mathrm{~B}_{1}+1 / 2 X$
$-Y_{4} 日_{1+1 / 2 X-1 / 2 X^{3} / 3 \text { ！}}$

- \Y ${ }_{5}$ 日Y $4+1 / 2 X^{5} / 5$ ！
- $\ Y_{6}$ 日Y $Y_{5}-1 / 2 X^{7} / 7$ ！
－\Y 7 $^{\left(Y_{6}+1 / 2 X^{9} / 9 \text { ！}\right.}$

Taylor Series centered at x = a

Let $f(x)$ be a function with derivatives of all order throughout some open interval containing a, then the Taylor Series generated by $f(x)$ at $x=a$ is:

$$
\frac{f(a)}{0!}+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{n}(a)}{n!}(x-a)^{n}+\ldots
$$

The partial sum:
$P_{Y}(x)=\sum_{k=0}^{n} \frac{f^{k}(a)}{k!}(x-a)^{k}=\frac{f(a)}{0!}+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{n}(a)}{n!}(x-a)^{n}$
Is called the nth degree Taylor Polynomial centered at $\mathrm{x}=\mathrm{a}$.
*Note: A Taylor Series centered at $\mathrm{x}=0$ is also called a McLauren Series. A McLauren Series is just a special case of a Taylor Series.

Ex. Generate the $6^{\text {th }}$ degree Taylor Polynomial for $y=\ln (x)$ centered at $x=1$. Write the formula for the Taylor Series.

$$
\begin{array}{ll}
f(x)=\ln x & f(1)=0 \\
f^{\prime}(x)=\frac{1}{x} & f^{\prime}(1)=1 \\
f^{\prime \prime}(x)=-1 / x^{2} & f^{\prime \prime}(1)=-1 \\
f^{\prime \prime \prime}(x)=2 / x^{3} & f^{\prime \prime \prime}(1)=-2 \\
f^{\prime \prime \prime}(x)=-6 / x^{4} & f^{\prime \prime \prime \prime}(1)=-6 \\
f^{\prime \prime}(x)=24 / x^{5} & f^{I}(1)=-24
\end{array}
$$

$P_{6}(x)=0+\frac{1(x-1)}{1!}+\frac{-1(x-1)^{2}}{2!}+\frac{2(x-1)^{3}}{3!}+\frac{-6(x-1)^{4}}{4!}+$

$$
-\frac{24(x-1)^{5}}{5!}
$$

$$
\begin{aligned}
& 5! \\
& \sum^{\infty}(x-1)-1 / 2(x-1)^{2}+1 / 3(x-1)^{3}+1 / 4(x-1)^{4}-1 / 5(x-1)^{5} \\
& \frac{1}{n+1}(x-1)^{n+1}
\end{aligned}
$$

Graph the function and the Taylor Polynomial

Gut instinct - what do you think is the interval of convergence?

[] NORMAL FLOAT AUTO REAL RADIAN MP

Ex4. Given the Taylor Series for $y=\ln (x)$ centered at $x=1$ is:

$$
\ln (x)-\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1}(x-1)^{n+1}-(x-1)-\frac{1}{2}(x-1)^{2}-\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}+\ldots
$$

Find: a.) $g(x)=\ln \left(x^{2}\right)$
b.) $h(x)=x \ln (x)$
a1) $g(x)=\ln \left(x^{2}\right)$

$$
\begin{aligned}
& \ln x=(x-1)-1 / 2(x-1)^{2}+1 / 3(x-1)^{3}-1 / 4(x-1)^{4}+\ldots . \\
& \ln \left(x^{2}\right)=\left(x^{2}-1\right)-1 / 2\left(x^{2}-1\right)^{2}+1 / 3\left(x^{2}-1\right)^{3}-1 / 4\left(x^{2}-1\right)^{4}+.
\end{aligned}
$$

b.) $h(x)=x \ln x$

$$
\begin{aligned}
\ln x & =(x-1)-1 / 2(x-1)^{2}+1 / 3(x-1)^{3}-1 / 4(x-1)^{4}+\cdots \\
x \ln x & =x(x-1)-1 / 2 x(x-1)^{2}+1 / 3 x(x-1)^{3}-1 / 4 x(x-1)^{4}+.
\end{aligned}
$$

Homework

Pg 492 \# 1-3, 5, 7, 8, 10, 13, 14, 22, 24-26, 31, 36-42

