Power Properties: The Sequel 7.2A

#1-6: Multiple choice: Circle the correct answer

1. Which one of the expressions is NOT the same as 6^{-2} ?

$$(A) \frac{1}{6^{-2}}$$

[B]
$$\left(\frac{1}{6}\right)^2$$

[C]
$$\frac{1}{6^2}$$

4. Simplify 4^{-2}

$$(B) \frac{1}{16}$$

[C]
$$\frac{1}{8}$$

2. Which of the following has the greatest value?

[A]
$$5^{-2}$$

[B]
$$(-2)^{0}$$

5. Simplify $3^2 + 3^4$

- [B]729
- [C] 6561

3. Evaluate $(3^{-2})^{-1}$

- Which power has the value 16?

$$[A]$$
 8^2

[B]
$$4^{-2}$$

$$\begin{array}{c}
|\mathbf{C}| & 4 \\
|\mathbf{C}| & \left(\frac{1}{4}\right)^{-2}
\end{array}$$

True or False? If the equation is false, then correct it to make it true.

b)
$$\frac{6x^7y^5}{3x^{-1}} = 2x^8y^5$$

$$xy^{2}z^{-3} \cdot x^{6}yz^{4} = x^{6}y^{2}z$$

d) $2x^2 \cdot (2x)^4 = 32x^6$ e) $6x^2 + (3x)^2 = 9x^4$ $6x^3 + 9x^4 = 15x^2$

$$6x^{2} + (3x)^{2} = 9x^{4}$$

$$6x^{3} + 9x^{2} = 15x^{2}$$

8. Mr. Nguyen gave his class a problem and asked them to find a number that could replace the question mark.

The problem was
$$(x^3)^0 = x^7 \cdot x^5$$
.

Jobi says that the question mark should be replaced by 0.

Tiana says that the question mark should be 1.

Katiana says that the question mark should be -5.

Toby says that the question is impossible to answer.

Toby says that the question is imposs

Who is correct? Explain why.

Katiana
$$(x^3)^5 = x^5 = 1$$

7.2A Power Properties: The Sequel

- Determine the number value that could appropriately replace the question mark to make the equation true.

- a) $d^{?} \cdot d^{4} = d^{8}$ b) $(x^{2})^{?} = x^{-6}$ c) $\frac{w^{?}}{w^{3}} = w^{-3}$ Change $(x^{2})^{0} = 4^{0}$ We are the number of the number of the second of the sec

#10-1: For the following problems, state what each student did incorrectly and fix their mistake.

10. Sarah's work

- Tyrell's work

Line 1 $\frac{\left(p^{4}d^{-3}q^{5}\right)^{2}}{q^{-1}\left(p^{-2}d^{3}\right)^{-2}} \quad \begin{cases} q^{-1} \text{ is not included} \\ \text{in the parenthesis} \\ \text{for power of a product} \\ \text{for power of a product} \end{cases} \quad \text{Line 1} \quad \left(2n^{-3}\right)^{-4} \cdot 2n^{-3} \quad \left(2n^{-3}\right)^{-4} \cdot 2n^{-3}$

12. A friend of yours is having a difficult time understanding why the answer to the following problem is true.

Explain how to simplify the expression to your friend. $\frac{3x^5 (xy^3)^{-2}}{18x^{-4}y^5} = \frac{x^7}{6y^{11}}$

7.2A Power Properties: The Sequel

13. Can you add the following expressions? Explain why or why not and state the answer.

 $-2x^3y^4 + 7x^3y^4 = 5x^3y^4$

yes because they are like terms so you just add the coefficients.

- #14-22: Simplify. Your answer should contain only positive exponents.
- 14. $b^{-2} \cdot (2b)^2$ $b^{-3} + 4b^{-3}$ $4b^{-3} + 4b^{-3}$

15. $\frac{\left(k^{2}\right)^{-2}}{2k^{0}k}$ $\frac{\left(k^{2}\right)^{-4}}{2(1)!}$ $\frac{1}{2K^{5}}$

16. $\frac{2p^{-3} \cdot p^{2}}{2p^{0}(2p)^{4}}$ $\frac{2p^{-1}}{2 \cdot 1 \cdot |6p^{4}|}$ $\frac{2}{32p^{5}}$ $\frac{2}{|6p^{5}|}$

- 17. $\frac{\left(\frac{c^3r^{-2}p^4}{r^2p^3}\right)^3}{\left(\frac{c^3r^{-2}p^4}{r^3}\right)^3}$ $\frac{c^9\sqrt{6p^3}}{\sqrt{6p^3}}$ $\frac{c^9\sqrt{6p^3}}{\sqrt{6p^3}}$
- 18. $\left(3(z^2b)^3\right)^2$ $\left(3z^6b^3\right)^2$ $\left(9z^{12}b^6\right)$
- 19. $2\left(\frac{3x^2}{2}\right)^2$ $2\left(\frac{9x^4}{4}\right)$ $2\left(\frac{9x^4}{4}\right)$

Section 7.2A

Name	•	Period	

7.2A Power Properties: The Sequel

This page intentionally left blank