MS Algebra: 2.1.1-Day 2

Warm-up

?'s on homework: Wksht 2.1.1

Goal: I understand function notation and that a function is a relationship between an independent and dependent variable.

HW: pg. 259 #7-9, 11-19

In the scoring systems of some track meets, for first place you get 5 points, for second place you get 3 points, for third place you get 2 points, and for fourth place you get 1 point.

State the independent and dependent variables for the track meet scoring situation.

track meet scoring situation.		
Hint:	What happens 1st - Do you finish the race and know your place 1st? or do you know your points earned 1st?	
Independent variable:	place you finish	
Dependent variable:	points you earn	
Independent variable:	place you finish	

Warm - Up: Associative, Commutative, or Identity?

1) On your way to school - you drive 4 miles to Eisenhower and another 2 miles to get to Northdale. 4+2=6 miles. When you travel home at the end of the day, you travel 2 miles to Northdale and the 4 miles to home. 2+4=6. What property is this demonstrating?

Commutative

2) Ella, Joe, and Mack total up their money. Ella and Joe combine their money: \$7 and \$3 and then Mack adds in his \$4. How much money do they have total? (7+3)+4 = 14

What if Joe and Mack combine their money first $\frac{1}{2}$ 3 and $\frac{1}{2}$ 4 and then Ella adds in her money. How much money do they have total? 7+(3+4) = 14

What property is this demonstrating? Associative

Notice in the previous example about the track meet scoring, each input value has exactly one output value. When a relationship exists were each input has only one output, we call the relationship a function.

- 1. Ordered pairs (input, output) (1,5)
 - (2,3)
 - (3,2)
 - (4,1)
- 2. A table input output

nput outpu				
×	у			
1	5			
2	3			
3	2			
4	1			

3. a graph

4. mapping diagram

Examples that do NOT represent functions:

Ordered pairs:

- (1, 4)
- (2, 10)
- (2, 14)
- (4,16)

How can you tell by looking at this set of ordered pairs that it does not represent a function?

The x-value of 2 has more than 1 output - 10 and 14.

Table:

×	У
6	8
10	12
12	16
12	20

How can you tell by looking at this table that the set of values does not represent a function?

The x-value of 2 has more than 1 output - 16 and 20.

Examples that do NOT represent functions:

Mapping diagram

How can you tell that this mapping diagram does NOT represent a function?

The x-value (input) of 1 has more than one output-5 and 7.

Graph:

How can you tell that this graph does NOT represent a function?

There are x-values that have more than one output. For example, the x-value of 4 has two outputs, 2 and -2.

Vertical line test The vertical line test is a visual way to see if a graph represents a function or not. Performing the vertical line anywhere on the graph. If the line passes through the graph at only ONE point, then the graph does represent a function.

Examples:

function

State whether the following represent functions:

Yes- the graph passes the vertical line test. Domain- all real numbers Range- all real numbers from -1 to 1.

C.	Input	Output	
	2	5	
	4	6	
	6	5	
	8	6	

Yes - every input value has only one output value. Domain: 2, 4, 6, 8 Range: 5, 6

B. (1, 3) (5, 2) (-2, 4) (5, 0)

No- the x-value (input) of 5 has more than one y-value (output).

D., Input Output

Yes, every input value has only one output value. Domain: 7, 9, 10, 16 Range: 8, 10, 12