

MS Algebra: 2.54

Warm-up

Goal: I can represent linear functions with tables, verbal descriptions, symbols, equations, and graphs - and translate from one representation to another.

HW: Worksheet 2.54

Situation 2:

At the gas station we buy gas for \$3 per gallon

Independent Variable x: # of gallons of gas Dependent Variable f(x): cost

Table:

	# gallons of gas **	cost y	
+5	0	٥) +15
+5	5	5	\(\frac{1}{15}\)
	10	30)+15
+5(15	45	ノ*13

What is the rate of change? 15/5 = \$3/gallon

Equation:

 $cost = $3.00 \cdot # of gallons of gas$ f(x) = 3x

Graph:

Find f(7) and explain its meaning in context of the problem.

f(7)=3(7)=21If you buy 7 gallons of gas, your cost will be \$21.

CW 2.5.4 Function Representations

Situation 1:

At the Vikings' game, it is Ball Park Frank Day. Each football fan will receive two free hot dogs with their paid admission to the game.

Independent Variable x:

of fans attending game Dependent Variable f(x):

of free hot dogs

Table:

# of fans	# of hot dogs
0	70
1	2
2	4
3	6
4	8

Equation:

of hot dogs = $2 \cdot$ # of fans f(x) = 2x

Name

Graph:

Find f(500) and explain its meaning in context of the problem.

> f(500) 2(500) = 1000If there are 500 fans, 1,000 free hot dogs will be given away.

Situation 3:

At an outside market you can buy an ear of corn for \$0.50.

Independent Variable x:

of ears of corn Dependent Variable f(x):

cost

Table:

	# ears of corn	cost	
+6(0	0)+3
+6(6	3	A_{r}
>	12	6	7
+6(18	9	ノ *、

Equation:

 $cost = $0.50 \cdot # of ears of corn$ f(x) = 0.50x

Graph:

If you increase the # of ears of corn by 12, how much will the cost increase?

> \$6 0.5(12)

What is the rate of change? \$3/6 ears = \$0.50/ear of corn