

- 2) Graph each equation using the graphing calculator and then draw a sketch of it using a colored pencil. Fill in the o with the appropriate color to show what color you used for each equation.
 - $y_1 = -x m = \underline{\qquad -1}$
 - $y_2 = -3x$ $m = _3$
 - $y_3 = -\frac{1}{2}x$ $m = \frac{-1/2}{2}$

a) What similarities do you see in the graphs?

same y-intercept; all lines go through (0, 0); they all go down to the right; the all have a negative slope

- b) Which line is the steepest? Y2
- c) Which line is the least steep/flattest? y₃

Why???

Multiplying by -3 changes faster than multiplying by -1 or -1/2. Multiplying by -1/2 changes the slowest.

CW: 2.6.3 Graphing Calculator Exploration Name_

materials needed: colored pencils, ruler, graphing calculator

- 1) The following equations are in the form y = mx. Graph each equation using the graphing calculator and then draw a sketch of it using a colored pencil. Fill in the o with the appropriate color to show what color you used for each equation/graph.
 - $y_1 = x \qquad m = \underline{1}$

 - $y_3 = \frac{1}{2}x$ $m = \frac{1/2}{2}$

- a) What similarities do you see in the graphs? same y-intercept; all lines go through (0, 0); they all go up to the right; the all have a positive slope
- b) Which line is the steepest? y2
- c) Which line is the least steep/flattest? y3

Multiplying by 3 changes faster than multiplying by 1 or 1/2. Multiplying by 1/2 changes the slowest.

3) What effect does the slope (m) have on the graph?

m effects the slant/angle/slope of the line.

- 4) Graph each pair of lines on the graphing calculator. Determine which line is the steepest.
 - $y_1 = \frac{1}{2}x$ $m = \frac{1/3}{2}$
 - $y_2 = -2x$ m = -2

$$y_1 = -3x$$
 $m = -3$

$$y_2 = 3x m = 3$$

The steeper line is: neither - same steepness

7) Graph the two equations below in the graphing calculator. What do you notice?

•
$$y_1 = x^2$$

They are not linear; not y = mx + b

•
$$y_2 = \frac{1}{x}$$

5) The following equations are in the form y = mx + b. Graph each equation using the graphing calculator and then draw a sketch of it using a colored pencil. Fill in the o with the appropriate color to show what color you used for each equation/graph.

$$y_1 = x$$
 $m = 1$ $b = 0$

$$y_2 = x + 4$$
 $m = 1$ $b = 4$

$$y_3 = x - 2$$
 $m = 1$ $b = -2$

a) What similarities do you see in the graphs?

They all have the same slant/angle; They all have a positive slope.

b) What differences do you see in the graphs?

They have different y-intercepts; cross the y-axis at different points; some lines are higher than the others.

c) How does the value of b affect the graph?

The b value changes where the graph crosses the y-axis

6) What effect does the y-intercept (b) have on the graph?

The y-intercpet changes where the graph crosses the y-axis; it raises or lowers the graph.