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A function x ↦ f  (x) is called algebraic if, substituting for the number x 
in the domain, the corresponding number f  (x) in the range can be 
computed using a finite number of elementary operations (i.e. addition, 
subtraction, multiplication, division, and extracting a root). For example, 

f  (x) 5   
x 2 1   √

_____
 9 2 x  
 ___________ 

2x 2 6
   is algebraic. For our purposes in this course, functions 

can be organized into three categories: 

1. Algebraic functions

2. Exponential and logarithmic functions (Chapter 5) 

3. Trigonometric and inverse trigonometric functions (Chapter 7)

The focus of this chapter is algebraic functions of a single variable which – 
given the definition above – are functions that contain polynomials, radicals 
(surds), rational expressions (quotients), or a combination of these. The 
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chapter will begin by looking at polynomial functions in general and then 
moves onto a closer look at 2nd degree polynomial functions (quadratic 
functions). Solving equations containing polynomial functions is an 
important skill that will be covered. We will also study rational functions, 
which are quotients of polynomial functions and the associated topic of 
partial fractions (optional). The chapter will close with methods of solving 
inequalities and absolute value functions, and strategies for solving various 
equations.

 3.1 Polynomial functions

The most common type of algebraic function is a polynomial function 
where, not surprisingly, the function’s rule is given by a polynomial.  
For example,

f  (x) 5 x 3,   h(t) 5 22t 2 1 16t 2 24,   g(y) 5 y 5 1 y 4 2 11y 3 1 7y 2 1 10y 2 8

Recalling the definition of a polynomial, we define a polynomial function.

Definition of a polynomial function in the variable x
A polynomial function P is a function that can be expressed as

 P(x) 5 anxn 1 an 2 1xn 2 1 1 … 1 a1x 1 a0,   an  0

where the non-negative integer n is the degree of the polynomial function. The 
numbers a0, a1, a2, …, an, are real numbers and are the coefficients of the polynomial. 
an is the leading coefficient, anxn is the leading term and a0 is the constant term.

It is common practice to use subscript notation for coefficients of general 
polynomial functions, but for polynomial functions of low degree, the 
following simpler forms are often used.

Degree Function form Function name Graph

Zero P(x) 5 a Constant function Horizontal line

First P(x) 5 ax 1 b Linear function Line with slope a

Second P(x) 5 ax 2 1 bx 1 c Quadratic function Parabola (-shape, 1 turn)

Third P(x) 5 ax 3 1 bx 2 1 cx 1 d Cubic function  -shape (2 or no turns)

To identify an individual term in a polynomial function, we use the 
function name correlated with the power of x contained in the term. 
For example, the polynomial function f (x) 5 x 3 2 9x 1 4 has a cubic term 
of x 3, no quadratic term, a linear term of 29x, and a constant term of 4. 

For each polynomial function P(x) there is a corresponding polynomial 
equation P(x) 5 0. When we solve polynomial equations, we often refer to 
solutions as roots.

The concept of a function is a 
fairly recent development in 
the history of mathematics. 
Its meaning started to gain 
some clarity about the time of 
René Descartes (1596–1650) 
when he defined a function 
to be any positive integral 
power of x (i.e. x 2, x 3, x 4, 
etc.). Leibniz (1646–1716) and 
Johann Bernoulli (1667–1748) 
developed the concept further. 
It was Euler (1707–1783) who 
introduced the now standard 
function notation y 5 f (x). 

Table 3.1 Features of polynomial 
functions of low degree.

 Hint: When working with a 
polynomial function, such as  
f (x) 5 x 3 2 9x 1 4, it is common 
to refer to it in a couple of different 
ways – either as ‘the polynomial f (x)‘, 
or as ‘the function x 3 2 9x 1 4.’
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Zeros and roots
If P is a function and c is a number such that P(c) 5 0, then c is a zero of the function 
P (or of the polynomial P) and x 5 c is a root of the equation P(x) 5 0.

Approaches to finding zeros of various polynomial functions will be 
considered in the first three sections of this chapter. 

Graphs of polynomial functions
As we reviewed in Section 1.6, the graph of a first-degree polynomial 
function (linear function), such as P(x) 5 2x 2 5, is a line (Figure 3.1a). 
The graph of every second-degree polynomial function (quadratic 
function) is a parabola (Figure 3.1b). A thorough review and discussion of 
quadratic functions and their graphs is in the next section.

The simplest type of polynomial function is one whose rule is given by a 
power of x. In Figure 3.1, the graphs of P(x) 5 x n for n 5 1, 2, 3, 4, 5 and 
6 are shown. As the figure suggests, the graph of P(x) 5 x n has the same 
general -shape as y 5 x 2 when n is even, and the same general  shape 
as y 5 x 3 when n is odd. However, as the degree n increases, the graphs of 
polynomial functions become flatter near the origin and steeper away from 
the origin. 

Another interesting observation is that, depending on the degree of the 
polynomial function, its graph displays a certain type of symmetry. The 
graph of P(x) 5 x n is symmetric with respect to the origin when n is odd. 
Such a function is aptly called an odd function. The graph of P(x) 5 x n is 

 Hint: The use of the word ‘root’ 
here to denote the solution of a 
polynomial equation should not be 
confused with the use of the word 
in the context of square root, cube 
root, fifth root, etc.
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Figure 3.1 Graphs of P(x) 5 xn for 
increasing n.
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symmetric with respect to the y-axis when n is even. Accordingly any such 
function is called an even function. Formal definitions for odd and even 
functions will be presented in Chapter 7 when we investigate the graphs of 
the sine and cosine functions.

The graphs of polynomial functions that are not in the form P(x) 5 x n are 
more difficult to sketch. However, the graphs of all polynomial functions 
share these properties:

1. It is a smooth curve (i.e. it has no sharp, pointed turns – only smooth, 
rounded turns).

2. It is continuous (i.e. it has no breaks, gaps or holes).

3. It rises (P(x) → ) or falls (P(x) → 2) without bound as x → 1 or 
x → 2.

4. It extends on forever both to the left (2) and to the right (1); 
domain is R.

5. The graph of a polynomial function of degree n has at most n 2 1 
turning points.

If we wish to sketch the graph of a polynomial function without a GDC, 
we need to compute some function values in order to locate a few points 
on the graph. This could prove to be quite tedious if the polynomial 
function has a high degree. We will now develop a method that provides 

Note that the graph of an even 
function may or may not 
intersect the x-axis (x-intercept). 
As we will see, where and how 
often the graph of a function 
intersects the x-axis is helpful 
information when trying to 
determine the value and nature 
of the roots of a polynomial 
equation P(x) 5 0.

The property that is listed 
third of the five properties 
of the graphs of polynomial 
functions is referred to as the 
end behaviour of the function 
because it describes how the 
curve behaves at the left and 
right ends (i.e. as x → 1 and 
as x → 2). The end behaviour 
of a polynomial function is 
determined by its degree 
and by the sign of its leading 
coefficient. See Exercise 3.1, Q11. 

Not all polynomial functions are even or 
odd – that is, not all polynomial functions 
display rotation symmetry about the origin 
or reflection symmetry about the y-axis. 
For example, the graph of the polynomial 
function y 5 x 2 1 x 1 1 is neither even 
nor odd. It has line symmetry, but the line 
of symmetry is not the y-axis.

0 x

y

3

4

2

1

1 2

Figure 3.2 The graph of a 
polynomial function is a smooth, 
unbroken, continuous curve, such 
as the ones shown here. 

jump

sharp
corner

sharp
corner

gap
gap hole

Figure 3.3 There can be no 
jumps, gaps, holes or sharp corners 
on the graph of a polynomial 
function. Thus none of the 
functions whose graphs are shown 
here are polynomial functions. 
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an efficient procedure for evaluating polynomial functions. It will also 
be useful in the third section of this chapter for some situations when we 
divide polynomials. For simplicity, we give the method for a fourth-degree 
polynomial, but it is applicable to any nth degree polynomial.

Synthetic substitution (Optional)
Suppose we want to find the value of P(x) 5 a4x 4 1 a3x  3 1 a2x 2 1 a1x  1 a0 
when x 5 c, that is, find P(c). The computation of c 4 may be tricky, so 
rather than substituting c directly into P(x) we will take a gradual approach 
that consists of a sequence of multiplications and additions. We define  
b4, b3, b2, b1, and R by the following equations.

b4 5 a4 (1)

b3 5 b4c 1 a3 (2)

b2 5 b3c 1 a2 (3)

b1 5 b2c 1 a1 (4)

R 5 b1c 1 a0 (5)

Our goal is to show that the value of P(c) is equivalent to the value of 
R. Firstly, we substitute the expression for b3 given by equation (2) into 
equation (3), and also use equation (1) to replace b4 with a4, to produce

b2 5 (a4c 1 a3)c 1 a2

 5 a4c  2 1 a3c 1 a2 (6)

We now substitute this expression for b2 in (6) into (4) to give

b1 5 (a4c  2 1 a3c 1 a2)c 1 a1

 5 a4c  3 1 a3c 2 1 a2c 1 a1 (7)

To complete our goal we substitute this expression for b1 in (7) into (5) to 
give

R 5 (a4c  3 1 a3c 2 1 a2c 1 a1)c 1 a0

 5 a4c  4 1 a3c  3 1 a2c 2 1 a1c 1 a0 (8)

This is the value of P(x) when x 5 c. If we condense (6), (7) and (8) into 
one expression, we obtain

R 5 {[(a4c  1 a3)c 1 a2]c 1 a1}c 1 a0

 5 a4c  4 1 a3c  3 1 a2c 2 1 a1c 1 a0 5 P(c) (9)

Carrying out the computations for equation (9) can be challenging. 
However, a nice pattern can be found if we closely inspect the expression 
{[(a4c  1 a3)c 1 a2]c 1 a1}c 1 a0. Each nested computation involves finding 
the product of c and one of the coefficients, an, (starting with the leading 
coefficient) and then adding the next coefficient – and repeating this 
process until the constant term is used. Hence, the actual computation of R 
is quite straightforward if we arrange the nested computations required for 
(9) in the following systematic manner.
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c a4 a3 a2 a1 a0

c 3 b4 c 3 b3 c 3 b2 c 3 b1

b4 b3 b2 b1 R 5 P(c)

In this procedure we place c in a small box to the upper left. The 
coefficients of the polynomial function P(x) are placed in the first line. We 
start by simply rewriting the leading coefficient below the horizontal line 
(remember b4 5 a4). The diagonal arrows indicate that we multiply the 
number in the row below the line by c to obtain the next number in the 
second row above the line. Each bn after the leading coefficient is obtained 
by adding the two numbers in the first and second rows directly above bn. 
At the end of the procedure, the last such sum is R 5 P(c). This method of 
computing the value of P(x) when x 5 c is called synthetic substitution.

Example 1 – Using synthetic substitution to find function values  

Given P(x) 5 2x 4 1 6x 3 2 5x 2 1 7x 2 12, find the value of P(x) when 
x 5 24, 21 and 2.

Solution

We use the procedure for synthetic substitution just described.

24 2 6 25 7 212

28 8 212 20

2 22 3 25 8 5 P(24)

Therefore, P(24) 5 8.

Note: Contrast using synthetic substitution to evaluate P(24) with using 
direct substitution.

P(24) 5 2(24)4 1 6(24)3 2 5(24)2 1 7(24) 2 12

5 2(256) 1 6(264) 2 5(16) 2 28 2 12

5 512 2 384 2 80 2 28 2 12

5 128 2 108 2 12

5 8

21 2 6 25 7 212

22 24 9 216

2 4 29 16 228 5 P(21)

Therefore, P(21) 5 228.
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2 2 6 25 7 212

4 20 30 74

2 10 15 37 62 5 P(2)

Therefore, P(2) 5 62.

Since the graphs of all polynomial functions are continuous (no gaps or holes), 
then the function values we computed for the quartic polynomial function 
in Example 1 can give us information about the location of its zeros (i.e. 
x-intercepts of the graph). Since P(24) 5 8 and P(21) 5 228, then the 
graph of P(x) must cross the x-axis (P(x) 5 0) at least once between x 5 24 
and x 5 21. Also, with P(21) 5 228 and P(2) 5 62 there must be at least one 
x-intercept between x 5 21 and x 5 2. Hence, the polynomial equation 
P(x) 5 2x 4 1 6x 3 2 5x 2 1 7x 2 12 5 0 has at least one real root between 
24 and 21, and at least one real root between 21 and 2. In Section 3.3 we 
will investigate real zeros of polynomial functions and then we will extend the 
investigation to include imaginary zeros, thereby extending the universal set  
for solving polynomial equations from the real numbers to complex numbers. 

Graphing P(x) 5 2x 4 1 6x 3 2 5x 2 1 7x 2 12 on our GDC, we observe that 
the graph of P(x) does indeed intersect the x-axis between 24 and 21 (just 
slightly greater than x 5 24), and again between 21 and 2 (near x 5 1).
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Example 2 

Use synthetic substitution to find the y-coordinates of the points on the 
graph of f  (x) 5 x  3 2 4x  2 1 24 for x 5 23, 21, 1, 3 and 5. Sketch the graph 
of f for 24 < x < 6.

Solution

Important: In order for the method of synthetic substitution to work 
properly it is necessary to insert 0 for any ‘missing’ terms in the polynomial. 
The polynomial x  3 2 4x  2 1 24 has no linear term so the top row in the set-
up for synthetic substitution must be 1  24  0  24.

 Hint: For some values of 
x, evaluating P(x) by direct 
substitution may be quicker than 
using synthetic substitution. This is 
certainly true when x 5 0 or x 5 1. 
For example, it is easy to determine 
that P(0) 5 212 for the polynomial 
P in Example 1; and that 
P(1) 5 2 1 6 2 5 1 7 2 12 5 22.
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Therefore, the points (23, 239), (21, 19), (1, 21), (3, 15) and (5, 49) are on 
the graph of f and have been plotted in the coordinate plane below. 
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Recall that the end behaviour of a polynomial function is determined by  
its degree and by the sign of its leading coefficient. Since the leading term 
of f is x  3 then its graph will fall (y → 2) as x → 2 and will rise 
(y → ) as x → 1. Also a polynomial function of degree n has at most 
n 2 1 turning points; therefore, the graph of f   has at most two turning 
points. Given the coordinates of the five points found with the aid of 
synthetic substitution, there will clearly be exactly two turning points. The 
graph of f can now be accurately sketched.
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Exercise 3.1

In questions 1–4, use synthetic substitution to evaluate P(x) for the given values 
of x.

 1 P(x) 5 x 4 1 2x 3 2 3x  2 2 4x 2 20,  x 5 2, x 5 23

 2 P(x) 5 2x 5 2 x 4 1 3x  3 2 15x 2 9,  x 5 21, x 5 2

 3 P(x) 5 x 5 1 5x 4 1 3x  3 2 6x  2 2 9x 1 11,  x 5 22, x 5 4

 4 P(x) 5 x 3 2 (c 1 3)x  2 1 (3c 1 5)x 2 5c,  x 5 c, x 5 2

 5 Given P(x) 5 kx 3 1 2x 2 2 10x 1 3, for what value of k is P(22) 5 15?

 6 Given P(x) 5 3x 4 2 2x 3 2 10x2 1 3kx 1 3, for what value of k is x 5 2   1 _ 3   a zero 
of P(x)?

For questions 7 and 8, do not use your GDC.

 7  a) Given y 5 2x 3 1 3x 2 2 5x 2 4, determine the y-value for each value of x 
  such that x  {23, 22, 21, 0, 1, 2, 3}.

b) How many times must the graph of y 5 2x 3 1 3x 2 2 5x 2 4 cross the x-axis? 

c) Sketch the graph of y 5 2x 3 1 3x 2 2 5x 2 4.

 8 a) Given y 5 x 4 2 4x 2 2 2x 1 1, determine the y-value for each value of x  
 such that x  {23, 22, 21, 0, 1, 2, 3}.

b) How many times must the graph of y 5 x 4 2 4x 2 2 2x 1 1 cross the x-axis? 

c) Sketch the graph of y 5 x 4 2 4x 2 2 2x 1 1.

 9 Given f  (x) 5 x 3 1 ax 2 2 5x 1 7a, find a so that f  (2) 5 10.

10 Given f  (x) 5 bx 3 2 5x 2 1 2bx 1 10, find b so that f  (  √
__

 3  ) 5 220.

11 There are four possible end behaviours for a polynomial function P(x). 
These are: 

as x → , P(x) →  and as x → 2, P(x) →      or symbolically (↖, ↗)

as x → , P(x) → 2 and as x → 2, P(x) →      or symbolically (↖, ↘)

as x → , P(x) → 2 and as x → 2, P(x) → 2     or symbolically (↙, ↘)

as x → , P(x) →  and as x → 2, P(x) → 2     or symbolically (↙, ↗)

a) By sketching a graph on your GDC, state the type of end behaviour for each 
of the polynomial functions below.

 (i) P(x) 5 2x 4 2 6x 3 1 x 2 1 4x 2 1
 (ii) P(x) 5 22x 4 2 6x 3 1 x 2 1 4x 2 1
 (iii) P(x) 5 26x 3 1 x 2 1 4x 2 1
 (iv) P(x) 5 6x 3 1 x 2 2 4x 2 1
 (v) P(x) 5 x 2 2 4x 2 1
 (vi) P(x) 5 22x 6 1 x 5 1 2x 4 2 3x 3 1 4x 2 2 x 1 1
 (vii) P(x) 5 x 5 1 2x 4 2 x 3 1 x 2 2 x 1 1 
 (viii) P(x) 5 2x 5 1 2x 4 2 x 3 1 x 2 2 x 1 1

b) Use your results from a) to write a general statement about how the 
leading term of a polynomial function, anxn, determines what type of end 
behaviour the graph of the function will display. Be specific about how the 
characteristics of the coefficient, an, and the power, n, of the leading term 
affect the function’s end behaviour.
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    Quadratic functions

A linear function is a polynomial function of degree one that can be 
written in the general form f (x) 5 ax 1 b where a  0. Linear equations 
were briefly reviewed in Section 1.6. It is clear that any linear function will 

have a single solution (root) of x 5 2   b __ 
a

  . In essence, this is a formula that 

gives the zero of any linear polynomial.

In this section, we will focus on quadratic functions – functions consisting 
of a second-degree polynomial that can be written in the form  
f (x) 5 ax2 1 bx 1 c such that a  0. You are probably familiar with the 
quadratic formula that gives the zeros of any quadratic polynomial. We will 
also investigate other methods of finding zeros of quadratics and consider 
important characteristics of the graphs of quadratic functions.

Definition of a quadratic function
If a, b and c are real numbers, and a  0, the function f (x) 5 ax2 1 bx 1 c is a quadratic 
function. The graph of f is the graph of the equation y 5 ax2 1 bx 1 c and is called a 
parabola. 

Each parabola is symmetric about a vertical line called its axis of 
symmetry. The axis of symmetry passes through a point on the parabola 
called the vertex of the parabola, as shown in Figure 3.4. If the leading 
coefficient, a, of the quadratic function f (x) 5 ax 2 1 bx 1 c  is positive, the 
parabola opens upward (concave up) – and the y-coordinate of the vertex 
will be a minimum value for the function. If the leading coefficient, a, of 
f (x) 5 ax 2 1 bx 1 c is negative, the parabola opens downward (concave 
down) – and the y-coordinate of the vertex will be a maximum value for 
the function.

The graph of f (x) 5 a(x 2 h)2 1 k
From the previous chapter, we know that the graph of the equation  
y 5 (x 1 3)2 1 2 can be obtained by translating y 5 x 2 three units to 
the left and two units up. Being familiar with the shape and position of the 
graph of y 5 x 2, and knowing the two translations that transform y 5 x 2 to 

The word quadratic comes 
from the Latin word quadratus 
that means four-sided, to make 
square, or simply a square. 
Numerus quadratus means 
a square number. Before 
modern algebraic notation 
was developed in the 17th and 
18th centuries, the geometric 
figure of a square was used to 
indicate a number multiplying 
itself. Hence, raising a number 
to the power of two (in modern 
notation) is commonly referred 
to as the operation of squaring. 
Quadratic then came to be 
associated with a polynomial of 
degree two rather than being 
associated with the number 
four, as the prefix quad often 
indicates (e.g. quadruple).

x
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vertex
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If a � 0 then the parabola opens upward.

y

0 x

f(x) � ax2 � bx � c
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If a � 0 then the parabola opens downward.

y

0

Figure 3.4 'Concave up' and 
'concave down' parabolas.

3.2
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y 5 (x 1 3)2 1 2, we can easily visualize and/or sketch the graph of 
y 5 (x 1 3)2 1 2 (see Figure 3.5). We can also determine the axis of 
symmetry and the vertex of the graph. Figure 3.6 shows that the graph of  
y 5 (x 1 3)2 1 2 has an axis of symmetry of x 5 23 and a vertex at (23, 2). 
The equation y 5 (x 1 3)2 1 2 can also be written as y 5 x 2 1 6x 1 11. 
Because we can easily identify the vertex of the parabola when the equation 
is written as y 5 (x 1 3)2 1 2, we often refer to this as the vertex form of the 
quadratic equation, and y 5 x 2 1 6x 1 11 as the general form.

Vertex form of a quadratic function
If a quadratic function is written in the form f (x) 5 a(x 2 h)2 1 k, with a  0, the graph 
of f has an axis of symmetry of x 5 h and a vertex at (h, k).

Completing the square

For visualizing and sketching purposes, it is helpful to have a quadratic 
function written in vertex form. How do we rewrite a quadratic function 
written in the form f (x) 5 ax 2 1 bx 1 c (general form) into the form 
f (x) 5 a(x 2 h)2 1 k (vertex form)? We use the technique of completing 
the square. 

For any real number p, the quadratic expression x 2 1 px 1  (   p __ 
2

   ) 
2
 is the 

square of  ( x 1   
p

 __ 
2

   ) . Convince yourself of this by expanding  ( x 1   
p

 __ 
2

   ) 
2
. The 

technique of completing the square is essentially the process of adding a 
constant to a quadratic expression to make it the square of a binomial. If 
the coefficient of the quadratic term (x 2) is positive one, the coefficient 

of the linear term is p, and the constant term is  (   p __ 
2

   ) 
2
, then

x 2 1 px 1  (   p __ 
2

   ) 
2
 5  ( x 1   

p
 __ 

2
   ) 

2
 and the square is completed. 

Remember that the coefficient of the quadratic term (leading coefficient) 
must be equal to positive one before completing the square.

y � (x � 3)2

y � (x � 3)2 � 2

y � x2
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2 units up
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y � (x � 3)2 � 2
y
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axis of symmetry

vertex (�3, 2)

x � �3

0

Figure 3.5 Translating y 5 x2 to give 
y 5 (x 1 3)2 1 2.

Figure 3.6 The axis of symmetry and the 
vertex.

 Hint: f (x) 5 a(x 2 h)2 1 k 
is sometimes referred to as the 
standard form of a quadratic 
function.
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Example 3 

Find the equation of the axis of symmetry and the coordinates of the 
vertex of the graph of f (x) 5 x 2 2 8x 1 18 by rewriting the function in the 

form x 2 1 px 1  (   p __ 
2

   ) 
2
.

Solution

To complete the square and get the quadratic expression x 2 2 8x 1 18 in 

the form x 2 1 px 1  (   p __ 
2

   ) 
2
, the constant term needs to be  (   28 ___ 

2
   ) 

2
 5 16. 

We need to add 16, but also subtract 16, so that we are adding zero overall 
and, hence, not changing the original expression.

f (x) 5 x 2 2 8x 1 16 2 16 1 18  Actually adding zero (216 1 16) to the right 
side.

f (x) 5 x 2 2 8x 1 16 1 2 x 2 2 8x 1 16 fits the pattern x 2 1 px 1  (   p _ 
2

   ) 
2

 with p 5 28.

f (x) 5 (x 2 4)2 1 2 x 2 2 8x 1 16  5 (x 2 4)2

The axis of symmetry of the graph of f is the vertical line x 5 4 and the 
vertex is at (4, 2). See Figure 3.7.

Example 4 – Properties of a parabola 

For the function g  :  x ↦ 22x 2 2 12x 1 7,
a) find the axis of symmetry and the vertex of the graph
b) indicate the transformations that can be applied to y 5 x 2 to obtain 

the graph
c) find the minimum or maximum value. 

Solution
a) g  :  x ↦ 22 ( x 2 1 6x 2   7 __ 

2
   )  Factorize so that the coefficient of the   

  quadratic term is 11.

  g  :  x ↦ 22 ( x 2 1 6x 1 9 2 9 2   7 __ 
2

   )   p 5 6 ⇒ (    p _ 
2

   ) 
2
  5  9; hence, add 19 2 9 

(zero)

 g  :  x ↦ 22 [ (x 1 3)2 2   18 ___ 
2

   2   7 __ 
2

   ]  x 2 1 6x 1 9 5 (x 1 3)2

 g  :  x ↦ 22 [ (x 1 3)2 2   25 ___ 
2

   ] 
 g  :  x ↦ 22(x 1 3)2 1 25  Multiply through by 22 to 

remove outer brackets.

 g  :  x ↦ 22(x 2(23))2 1 25 Express in vertex form:
  g  :  x ↦ a(x 2 h)2 1 k

The axis of symmetry of the graph of g is the vertical line x 5 23 and 
the vertex is at (23, 25). See Figure 3.8.

b) Since g  :  x ↦ 22x 2 2 12x 1 7 5 22(x 1 3)2 1 25, the graph of g can 
be obtained by applying the following transformations (in the order 
given) on the graph of y 5 x 2: horizontal translation of 3 units left; 

x

y � x2 � 8x � 18

x � 4

(4, 2)

y

5

10

15

20

2 4 6 80

Figure 3.7

Figure 3.8

x

y � �2x2 � 12x � 7

x � �3

�5

5

10

15

20

25

30

2�2�4�6�8

y

(�3, 25)

0
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reflection in the x-axis (parabola opening down); vertical stretch of 
factor 2; and a vertical translation of 25 units up.

c) The parabola opens down because the leading coefficient is negative. 
Therefore, g has a maximum and no minimum value. The maximum 
value is 25 (y-coordinate of vertex) at x 5 23.

The technique of completing the square can be used to derive the quadratic 
formula. The following example derives a general expression for the axis  
of symmetry and vertex of a quadratic function in the general form  
f (x) 5 ax 2 1 bx 1 c  by completing the square.

Example 5 – Graphical properties of general quadratic functions 

Find the axis of symmetry and the vertex for the general quadratic 
function f (x) 5 ax 2 1 bx 1 c.

Solution

f (x) 5 a  ( x 2 1   b __ a   x 1   c __ a   )  Factorize so that the coefficient

  of the x 2 term is 11.

f (x) 5 a  [ x 2 1   b __ a   x 1  (   b ___ 
2a

   ) 2 2  (   b ___ 
2a

   ) 2 1   c __ a   ]  p 5   b __ a   ⇒  (   p __ 2   ) 
2
 5  (   b ___ 2a

   ) 
2

f (x) 5 a  [  ( x 1   b ___ 
2a

   ) 2 2   b 2 ___ 
4a2   1   c __ a   ]  x2 1   b __ a   x 1  (   b ___ 2a

   ) 
2
 5 x 1  (   b ___ 2a

   )  
2

f (x) 5 a  ( x 1   b ___ 
2a

   ) 
2
 2   b 2 ___ 4a   1 c Multiply through by a. 

f (x) 5 a  ( x 2 ( 2   b ___ 
2a

   )  ) 
2
 1 c 2   b 2 ___ 4a   Express in vertex form:

  f (x) 5 a(x 2 h)2 1 k

This result leads to the following generalization.

Symmetry and vertex of f (x) 5 ax 2 1 bx 1 c
For the graph of the quadratic function f (x) 5 ax 2 1 bx 1 c, the axis of symmetry is the 

vertical line with the equation x 5 2   b ___ 2a
   and the vertex has coordinates  ( 2   b ___ 2a

  , c 2   b 2 ___ 4a   ) .

Check the results for Example 4 using the formulae for the axis of 
symmetry and vertex. For the function g  :  x ↦ 22x 2 2 12x 1 7:

x 5 2   b ___ 
2a

   5 2   212 ______ 
2(22)

   5 23 ⇒ axis of symmetry is the vertical line x 5 23

c 2   b 2 ___ 4a   5 7 2   
(212)2

 ______ 
4(22)

   5   56 ___ 
8

   1   144 ___ 
8

   5 25 ⇒ vertex has coordinates (23, 25)

These results agree with the results from Example 4.

Zeros of a quadratic function
A specific value for x is a zero of a quadratic function f (x) 5 ax 2 1 bx 1 c 
if it is a solution (or root) to the equation ax 2 1 bx 1 c 5 0. 
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As we will observe, every quadratic function will have two zeros 
although it is possible for the same zero to occur twice (double zero, 
or double root). The x-coordinate of any point(s) where f crosses the 
x-axis (y-coordinate is zero) is a real zero of the function. A quadratic 
function can have one, two or no real zeros as Figure 3.9 illustrates. To 
find non-real zeros we need to extend our search to the set of complex 
numbers and we will see that a quadratic function with no real zeros 
will have two distinct imaginary zeros. Finding all zeros of a quadratic 
function requires you to solve quadratic equations of the form  
ax 2 1 bx 1 c 5 0. Although a  0, it is possible for b or c to be equal 
to zero. There are five general methods for solving quadratic  
equations as outlined in Table 3.2 below.

x

y

one real
zero

no real
zeros

two real
zeros

Figure 3.9

Square root If a2 5 c and c . 0, then a 5 √_
c   .

Examples x 2 2 25 5 0 (x 1 2)2 5 15
 x 2 5 25 x 1 2 5  √

___
 15  

 x 5 5 x 5 22  √
___

 15  

Factorizing If ab 5 0, then a 5 0 or b 5 0.

Examples x 2 1 3x 2 10 5 0 x 2 2 7x 5 0
 (x 1 5)(x 2 2) 5 0 x(x 2 7) 5 0
 x 5 25 or x 5 2 x 5 0 or x 5 7

Completing the  If x 2 1 px 1 q 5 0, then x 2 1 px 1  (   p __ 2   ) 
2
 5 2q 1  (   p __ 2   ) 

2
 which leads to  ( x 1   

p
 __ 2   ) 

2
 5 2q 1   

p2

 __ 4    
square

 and then the square root of both sides (as above).

Example x 2 2 8x 1 5 5 0
 x 2 2 8x 1 16 5 25 1 16
 (x 2 4)2 5 11
 x 2 4 5  √

___
 11  

 x 5 4   √
___

 11  

Quadratic formula If ax 2 1 bx 1 c 5 0, then x 5   2b   √
________

 b2 2 4ac    ______________ 2a
   .

Example 2x 2 2 3x 2 4 5 0

 x 5   
2(23)   √

______________

  (23)2 2 4(2)(24)  
   ________________________  

2(2)
  

 x 5   3   √
___

 41   _______ 4  

Graphing Graph the equation y 5 ax 2 1 bx 1 c on your GDC. Use the calculating features of your GDC to 
determine the x-coordinates of the point(s) where the parabola intersects the x-axis.
Note: This method works for finding real solutions, but not imaginary solutions.

Example 2x 2 2 5x 2 7 5 0 GDC calculations reveal that the zeros are at x 5   7 _ 2   and x 5 21

Table 3.2  Methods for solving quadratic equations.

Plot1 Plot2
1:value

Y1=2x2-5x-7

Left Bound?
X=2.787234 Y=-5.398823

Left Bound? Right Bound?
X=-1.297872 X=-.6170213 Y=-3.153463

Y1=2x2-5x-7 Y1=2x2-5x-7 Y1=2x2-5x-7

Y=2.8583069

Right Bound? Guess?
X=3.8085106 X=3.6382979

Zero
X=-1 Y=0

Zero
X=3.5 Y=0

Y=1.2829335

Guess?
X=-.8723404 Y=-1.116342

Y1=2x2-5x-7

Y=2.9669535

3:minimum
4:maximum
5:intersect
6:dy dx
7:�f(x)dx

Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

Y1=2X2–5X–7
CALCULATE

2:zero

Y1=2x2-5x-7
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Sum and product of the roots of a quadratic 
equation

Consider the quadratic equation x 2 1 5x 2 24 5 0. This equation can be 
solved using factorization as follows.

x 2 1 5x 2 24 5 (x 1 8)(x 2 3) 5 0 ⇒ x 5 28 or x 5 3

Clearly, if x 2 a is a factor of the quadratic polynomial ax 2 1 bx 1 c, then 
x 5 a is a root (solution) of the quadratic equation ax 2 1 bx 1 c 5 0.

Now let us consider the general quadratic equation ax 2 1 bx 1 c 5 0, 
whose roots are x 5 a and x 5 b. Given our observation from the previous 
paragraph, we can write the quadratic equation with roots a and b as:

 ax 2 1 bx 1 c 5 (x 2 a)(x 2 b)  5  0
 x 2 2 ax 2 bx 1 ab  5 0
 x 2 2 (a 1 b)x 1 ab  5 0

Since the equation ax 2 1 bx 1 c 5 0 can also be written as x 2 1 b _a x 1 c _a  5 0, 
then: 

x 2 2 (a 1 b)x 1 ab 5 x 2 1 b _a x 1 c _a  

Equating coefficients of both sides, gives the following results.

a 1 b 5 2b _
a

  and ab 5 c _a 

Sum and product of the roots of a quadratic equation
For any quadratic equation in the form ax 2 1 bx 1 c 5 0, the sum of the roots of the 

equation is 2  b __ 
a

   and the product of the roots is   c __ a  . (In the next section, this result is 

extended to polynomial equations of any degree.)

Example 6 

If a and b are the roots of each equation, find the sum, a 1 b, and 
product, ab, of the roots.

a) x 2 2 5x 1 3 5 0 b) 3x 2 1 4x 2 7 5 0

Solution

a) For the equation x 2 2 5x 1 3 5 0, a 5 1, b 5 25 and c 5 3. 

 Therefore, a 1 b 5 2  b __ 
a

   5 2  25 ___ 
1

   5 5 and ab 5   c __ a   5   3 __ 
1

   5 3.

b) For the equation 3x 2 1 4x 2 7 5 0, a 5 3, b 5 4 and c 5 27. 

 Therefore, a 1 b 5 2  b __ 
a

   5 2  4 __ 
3

   and ab 5   c __ a   5   27 ___ 
3

  .

Example 7 

If a and b are the roots of the equation 2x 2 1 6x 2 5 5 0, find a quadratic 
equation whose roots are:

a) 2a, 2b b)   1 _____ 
a 1 1

  ,   1 _____ 
b 1 1

  

In the next section, the Factor 
Theorem formally states the 
relationship between linear 
factors of the form x – a and 
the zeros for any polynomial.

If the sum and product of the 
roots of a quadratic equation 
are known, then the equation 
can be written in the following 
form: x 2 2 (sum of roots)x 1 
(product of roots) 5 0
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Solution

For the equation 2x 2 1 6x 2 5 5 0, a 5 2, b 5 6 and c 5 25.

Thus, a 1 b 5 2b _
a

  5 26 _
2

  5 23 and ab 5 c _a  5 25 ___
2 .

a) Sum of the new roots 52a 1 2b 5 2(a 1 b) 5 2(23) 5 26.

 Thus for the new equation, 2  b __ 
a

   5 26.

 Product of the new roots 5 2a ⋅ 2b 5 4ab 5 4 ( 2  5 __ 
2

   )  5 210.

 Thus for the new equation,   c __ a   5 210.

 The new equation we are looking for can be written as ax 2 1 bx 1 c 5 0 or 

 x 2 1   b __ a  x 1   c __ a   5 0.

 Therefore, the quadratic equation with roots 2a, 2b is x 2 2(26)x 2 10 5 0 
⇒ x 2 1 6x 2 10 5 0

b) Sum of the new roots   1 _____ 
a 1 1

   1   1 _____ 
b 1 1

   5   
b 1 1 1 a 1 1

  _____________  
(a 1 1)(b 1 1)

   

 5   
a 1 b 1 2

  ______________  
ab 1 a 1 b 1 1

   5   23 1 2 __________ 
2  5 __ 

2
   2 3 1 1

   5   21 ___ 
2  9 __ 

2
  
   5   2 __ 

9
  .

 Thus for the new equation, 2  b __ 
a

   5   2 __ 
9

  .

 Product of the new roots  (   1 _____ 
a 1 1

   )  (   1 _____ 
b 1 1

   )  5   1 ______________  
ab 1 a 1 b 1 1

   

 5   1 __________ 
2  5 __ 

2
   2 3 1 1

   5   1 ___ 
2  9 __ 

2
  
   5 2  2 __ 

9
  .

 Thus for the new equation,   c __ a   5 2  2 __ 
9

  .

 The new equation we are looking for can be written as x 2 1   b __ a  x 1   c __ a   5 0.

 Therefore, the quadratic equation with roots

   1 _____ 
a 1 1

  ,   1 _____ 
b 1 1

   is x 2 2   2 __ 
9

  x 2   2 __ 
9

   5 0 or 9x 2 2 2x 2 2 5 0.

Example 8 

Given that the roots of the equation x 2 2 4x 1 2 5 0 are a and b, find the 
values of the following expressions.

a) a2 1 b2 b)   1 __ 
a2   1   1 __ 

b2  

Solution

With x 2 2 4x 1 2 5 0, a 1 b 5 2 b _a  5 2 24 ___
1  5 4 and ab 5 c _a  5 2 _

1  5 2.

Both of the expressions a2 1 b2 and 1 __
a2  1 1 __

b2  need to be expressed in terms 
of a 1 b and ab.

a) a2 1 b2 5 a2 1 2ab 1 b2 2 2ab 5 (a 1 b)2 2 2ab

 Substituting the values for a 1 b and ab from above, gives 
a2 1 b2 5 42 2 2 ⋅ 2 5 16 2 4 5 12.

b)   1 __ 
a2   1   1 __ 

b2   5   
b2

 ____ 
a2b2   1   a2

 ____ 
a2b2   5   

a2 1 b2

 _______ 
(ab)2  
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 From part a) we know that a2 1 b2 5 (a 1 b)2 2 2ab. Substituting 
this into the numerator gives:

   1 __ 
a2   1   1 __ 

b2   5   
(a 1 b)2 2 2ab

  ______________ 
(ab)2   Then substituting the values for a 1 b and

 ab from above, gives:

 5   4
2 2 2 ⋅ 2 ________ 

22   5   12 ___ 4   5 3

 Therefore,   1 __ 
a2   1   1 __ 

b2   5 3.

The quadratic formula and the discriminant
The expression that is beneath the radical sign in the quadratic formula, 
b 2 2 4ac, determines whether the zeros of a quadratic function are real or 
imaginary. Because it acts to ‘discriminate’ between the types of zeros,  
b 2 2 4ac is called the discriminant. It is often labelled with the Greek letter 
D (delta). The value of the discrimant can also indicate if the zeros are 
equal and if they are rational.

The discriminant and the nature of the zeros of a quadratic function
For the quadratic function f (x) 5 ax 2 1 bx 1 c, (a  0) where a,b and c are real numbers:

If D 5 b2 2 4ac . 0, then f has two distinct real zeros, and the graph of f intersects the 
x-axis twice.

If D 5 b2 2 4ac 5 0, then f has one real zero (double root), and the graph of f intersects 
the x-axis once (i.e. it is tangent to the x-axis).

If D 5 b2 2 4ac , 0, then f has two conjugate imaginary zeros, and the graph of f does 
not intersect the x-axis.

In the special case when a, b and c are integers and the discriminant is the square of an 
integer (a perfect square), the polynomial ax2 1 bx 1 c has two distinct rational zeros.

Factorable quadratics
If the zeros of a quadratic polynomial are rational – either two distinct zeros or two equal 
zeros (double zero/root) – then the polynomial is factorable. That is, if ax 2 1 bx 1 c has 
rational zeros then ax 2 1 bx 1 c 5 (mx 1 n)(px 1 q) where m, n, p and q are rational 
numbers.

Example 9 – Using discriminant to determine the nature of the roots 
of a quadratic equation 

Use the discriminant to determine how many real roots each equation 
has. Visually confirm the result by graphing the corresponding quadratic 
function for each equation on your GDC.

a) 2x 2 1 5x 2 3 5 0 b) 4x 2 2 12x 1 9 5 0 c) 2x 2 2 5x 1 6 5 0

When the discriminant is zero then the solution of a quadratic function is 

x 5   2b   √
________

 b2 2 4ac    ______________ 2a
   5   2b   √

__
 0   ________ 2a

   5 2   b ___ 2a
  . As mentioned, this solution of  2   b ___ 2a

   

is called a double zero (or root) which can also be described as a zero of 

multiplicity of 2. If a and b are integers then the zero  2   b ___ 2a
   will be rational. 

When we solve polynomial functions of higher degree later this chapter, we will 
encounter zeros of higher multiplicity.

 Hint: Remember that the roots 
of a polynomial equation are those 
values of x for which P(x) 5 0. These 
values of x are called the zeros of 
the polynomial P.
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Solution 

a) The discriminant is D 5 52 2 4(2)(23) 5 49 . 0. Therefore, the 
equation has two distinct real roots. This result is confirmed by the 
graph of the quadratic function y 5 2x 2 1 5x 2 3 that clearly shows it 
intersecting the x-axis twice. Also since D 5 49 is a perfect square then 
the two roots are also rational and the quadratic polynomial  
2x 2 1 5x 2 3 5 0 is factorable : 2x 2 1 5x 2 3 5 (2x 2 1)(x 1 3) 5 0. 
Thus, the two rational roots are x 5   1 _ 2   and x 5 23.

b) The discriminant is D 5 (212)2 2 4(4)(9) 5 0. Therefore, the equation 
has one rational root (a double root). The graph on the GDC of  
y 5 4x 2 2 12x 1 9 appears to intersect the x-axis at only one point. We 
can be more confident with this conclusion by investigating further – 
for example, tracing or looking at a table of values on the GDC.

y � 4x2 � 12x � 9

 Also, since the root is rational (D 5 0), the polynomial 4x 2 2 12x 1 9 
 must be factorable. 

4x 2 2 12x 1 9 5 (2x 2 3)(2x 2 3) 5  [ 2 ( x 2   3 _ 2   ) 2 ( x 2   3 _ 2   )  ]  5  4 ( x 2   3 _ 2   )  
2
  5 0

 There are two equal linear factors which means there are two equal 
rational zeros – both equal to   3 _ 2   in this case.

c) The discriminant is D 5 (25)2 2 4(2)(6) 5 223 , 0. Therefore, the 
equation has no real roots. This result is confirmed by the graph of the 
quadratic function y 5 2x 2 2 5x 1 6 that clearly shows that the graph 
does not intersect the x-axis. The equation will have two imaginary roots.

y � 2x2 � 5x � 6

Example 10 – The discriminant and number of real zeros 

For 4x 2 1 4kx 1 9 5 0, determine the value(s) of k so that the equation 
has: a) one real zero, b) two distinct real zeros, and c) no real zeros.

Solution

a) For one real zero D 5 (4k)2 2 4(4)(9) 5 0 ⇒ 16k 2 2 144 5 0 
 ⇒ 16k 2 5 144 ⇒ k 2 5 9 ⇒ k 5 3

 Hint: If a quadratic polynomial 
has a zero of multiplicity 2 (D 5 0), 
as in Example 6 b), then not only is 
the polynomial factorable but its 
factorization will contain two equal 
linear factors. In such a case then 
ax 2 1 bx 1 c 5 a(x 2 p)2 where 
x 2 p is the linear factor and x 5 p 
is the rational zero.

y � 2x2 � 5x � 3



108

Algebraic Functions, Equations and Inequalities3

b) For two distinct real zeros D 5 (4k)2 2 4(4)(9) . 0 ⇒ 16k 2 . 144 
 ⇒ k 2 . 9 ⇒ k , 23 or k . 3

c) For no real zeros D 5 (4k)2 2 4(4)(9) , 0 ⇒ 16k 2 , 144 ⇒ k 2 , 9
 ⇒ k . 23 and k , 3 ⇒ 23 , k , 3

Example 11 – Conjugate imaginary solutions 

Find the zeros of the function g : x → 2x 2 2 4x 1 7.

Solution

Solve the equation 2x 2 2 4x 1 7 5 0 using the quadratic formula with 
a 5 2, b 5 24, c 5 7.

x 5   
2(24)    √

______________

  (24)2 2 4(2)(7)  
   _______________________  

2(2)
   5   

4    √
____

 240  
 _________ 4   5   

4    √
__

 4    √
___

 21    √
___

 10  
  _____________ 4   

5   
4  2i  √

___
 10  
 _________ 4   5 1    

i   √
___

 10  
 _____ 

2
  

The two zeros of g are 1 1   
  √

___
 10  
 ____ 

2
   i and 1 2   

  √
___

 10  
 ____ 

2
   i.

Note that the imaginary zeros are written in the form a 1 bi (introduced 
in Section 1.1) and that they clearly are a pair of conjugates, i.e. fitting the 
pattern a 1 bi and a 2 bi.

The graph of f (x) 5 a(x 2 p)(x 2 q)
If a quadratic function is written in the form f (x) 5 a(x 2 p)(x 2 q) then 
we can easily identify the x-intercepts of the graph of f. Consider that 
f (p) 5 a(p 2 p)(p 2 q) 5 a(0)(p 2 q) 5 0 and that 
f (q) 5 a(q 2 p)(q 2 q) 5 a(q 2 p)(0) 5 0. Therefore, the quadratic 
function f (x) 5 a(x 2 p)(x 2 q) will intersect the x-axis at the points 
(p, 0) and (q, 0). We need to factorize in order to rewrite a quadratic function 
in the form f (x) 5 ax 2 1 bx 1 c   to the form f (x) 5 a(x 2 p)(x 2 q).
Hence, f (x) 5 a(x 2 p)(x 2 q) can be referred to as the factorized form of a 
quadratic function. Recalling the symmetric nature of a parabola, it is clear 
that the x-intercepts (p, 0) and (q, 0) will be equidistant from the axis of 
symmetry (see Figure 3.10). As a result, the equation of the axis of symmetry 
and the x-coordinate of the vertex of the parabola can be found from finding 
the average of p and q.

Factorized form of a quadratic function
If a quadratic function is written in the form f (x) 5 a(x 2 p)(x 2 q), with a  0, the 
graph of f has x-intercepts at (p, 0) and (q, 0), an axis of symmetry with equation 

x 5   
p 1 q

 _____ 2  , and a vertex at  (    p 1 q
 _____ 2  , f  (    p 1 q

 _____ 2   )  ) .

Number of complex zeros of 
a quadratic polynomial
Every quadratic polynomial 
has exactly two complex 
zeros, provided that a zero of 
multiplicity 2 (two equal zeros) 
is counted as two zeros.

 Hint: Recall from Section 1.1 that 
the real numbers and the imaginary 
numbers are distinct subsets of 
the complex numbers. A complex 
number can be either real 

 ( e.g. 27,   p __ 2  , 3 2   √
__

 2   )  or imaginary 

(e.g. 4i, 2 1 i    √
__

 5  ).

(p, 0)

vertex

(q, 0)

f(x) x �

( , f

axis of symmetry

x

y p � q
2

p � q
2 ( ))p � q

2

0

Figure 3.10
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Example 12 

Find the equation of each quadratic function from the graph in the form  
f (x) 5 a(x 2 p)(x 2 q) and also in the form f (x) 5 ax 2 1 bx 1 c.

a)   b)

   

Solution
a) Since the x-intercepts are 23 and 1 then y 5 a(x 1 3)(x 2 1). 

The y-intercept is 6, so when x 5 0, y 5 6. Hence, 
6 5 a(0 1 3)(0 2 1) 5 23a ⇒ a 5 22 (a , 0 agrees with the fact that 
the parabola is opening down). The function is f (x) 5 22(x 1 3)(x 2 1),
and expanding to remove brackets reveals that the function can also be 
written as f (x) 5 22x 2 2 4x 1 6.

b) The function has one x-intercept at 2 (double root), so p 5 q 5 2 and 
y 5 a(x 2 2)(x 2 2) 5 a(x 2 2)2. The y-intercept is 12, so when 
x 5 0, y 5 12. Hence, 12 5 a(0 2 2)2 5 4a ⇒ a 5 3 (a . 0 agrees 
with the parabola opening up). The function is f (x) 5 3(x 2 2)2. 
Expanding reveals that the function can also be written as  
f (x) 5 3x 2 2 12x 1 12.

Example 13 

The graph of a quadratic function intersects the x-axis at the points (26, 0)
and (22, 0) and also passes through the point (2, 16). a) Write the function 
in the form f (x) 5 a(x 2 p)(x 2 q). b) Find the vertex of the parabola. 
c) Write the function in the form f (x) 5 a(x 2 h)2 1 k.

Solution
a) The x-intercepts of 26 and 22 gives f (x) 5 a(x 1 6)(x 1 2). Since f 

passes through (2, 16), then f (2) 5 16 ⇒ f (2) 5 a(2 1 6)(2 1 2) 5 16
⇒ 32a 5 16 ⇒ a 5   1 _ 2  . Therefore, f (x) 5   1 _ 2  (x 1 6)(x 1 2).

b) The x-coordinate of the vertex is the average of the x-intercepts.

 x 5   26 2 2 _______ 
2

   5 24, so the y-coordinate of the vertex is 

 y 5 f (24) 5   1 _ 2  (24 1 6)(24 1 2) 5 22. Hence, the vertex is (24, 22).

c) In vertex form, the quadratic function is f (x) 5   1 _ 2  (x 1 4)2 2 2.

x

y

6

1�3 0

x

y

12

20
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Quadratic function, a  0 Graph of function Results

General form

f  (x) 5 ax 2 1 bx 1 c

D 5 b2 2 4ac (discriminant)

Parabola opens up if a . 0
Parabola opens down if a , 0

x � �

(                        )� c �

b
2a

,

�b �   �
2a

�b �   �
2a

b
2a

b2

4a

If D > 0, f has x-intercept(s)
If D , 0, f has no x-intercept(s)

Axis of symmetry is x 5 2   b ___ 2a
  

If D > 0, f has x-intercept(s):

  (   2b    √
__

 D  
 _________ 2a

  , 0 ) 

Vertex is:  ( 2   b ___ 2a
  , c 2   b

2
 ___ 4a   ) 

Vertex form

f  (x) 5 a(x 2 h)2 1 k

x � h

(h, k)

Axis of symmetry is x 5 h

Vertex is (h, k)

Factorized form 
(two distinct rational zeros)

f  (x) 5 a(x 2 p)(x 2 q)

f

(p, 0)(q, 0)

x �

(                        ))),

p � q
2

p � q
2

p � q
2

Axis of symmetry is x 5   
p 1 q

 _____ 2  

x-intercepts are: (p, 0) and (q, 0)

Factorized form 
(one rational zero)

f  (x) 5 a(x 2 p)2

(p, 0)

x � p Axis of symmetry is x 5 p

Vertex and x-intercept is (p, 0)

Exercise 3.2

For each of the quadratic functions f in questions 1–5, find the following:

a) the axis of symmetry and the vertex, by algebraic methods

b) the transformation(s) that can be applied to y 5 x 2 to obtain the graph of y 5 f (x)

c) the minimum or maximum value of f.

Check your results using your GDC.

 1 f  :  x ↦ x 2 2 10x 1 32  2 f  :  x ↦ x 2 1 6x 1 8

 3 f  :  x ↦ 22x 2 2 4x 1 10  4 f  :  x ↦ 4x 2 2 4x 1 9

 5 f  :  x ↦   1 _ 2  x 2 1 7x 1 26

Table 3.3 Review of properties of 
quadratics. 
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In questions 6–13, solve the quadratic equation using factorization.

 6 x 2 1 2x 2 8 5 0 7 x 2 5 3x 1 10

 8 6x 2 2 9x 5 0 9 6 1 5x 5 x 2

10 x 2 1 9 5 6x 11 3x 2 1 11x 2 4 5 0

12 3x 2 1 18 5 15x 13 9x 2 2 5 4x 2

In questions 14–19, use the method of completing the square to solve the quadratic 
equation.

14 x 2 1 4x 2 3 5 0 15 x 2 2 4x 2 5 5 0

16 x 2 2 2x 1 3 5 0 17 2x 2 1 16x 1 6 5 0

18 x 2 1 2x 2 8 5 0 19 22x 2 1 4x 1 9 5 0

20 Let f (x) 5 x 2 2 4x 2 1. a) Use the quadratic formula to find the zeros of the 
function. b) Use the zeros to find the equation for the axis of symmetry of the 
parabola. c) Find the minimum or maximum value of f.

In questions 21–24, determine the number of real solutions to each equation.

21 x 2 1 3x 1 2 5 0 

22 2x 2 2 3x 1 2 5 0

23 x 2 2 1 5 0 

24 2x 2 2   9 _ 4  x 1 1 5 0

25 Find the value(s) of p for which the equation 2x 2 1 px 1 1 5 0 has one real 
solution.

26 Find the value(s) of k for which the equation x 2 1 4x 1 k 5 0 has two distinct 
real solutions.

27 The equation x 2 2 4kx 1 4 5 0 has two distinct real solutions. Find the set of all 
possible values of k.

28 Find all possible values of m so that the graph of the function 
g  :  x ↦ mx 2 1 6x 1 m does not touch the x-axis.

29 Find the range of values of k such that 3x 2 2 12x 1 k . 0 for all real values of x. 
(Hint: Consider what must be true about the zeros of the quadratic equation  
y 5 3x 2 2 12x 1 k.)

30 Prove that the expression x 2 2 2 x 2 is negative for all real values of x.

In questions 31 and 32, find a quadratic function in the form y 5 ax 2 1 bx 1 c that 
satisfies the given conditions.

31 The function has zeros of x 5 21 and x 5 4 and its graph intersects the y-axis at 
(0, 8).

32 The function has zeros of x 5   1 _ 2   and x 5 3 and its graph passes through the 
point (21, 4).

33 Find the range of values for k in order for the equation 2x 2 1 (3 2 k)x 1 k 1 3 5 0 
to have two imaginary solutions.

34 For what values of m does the function f (x) 5 5x 2 2 mx 1 2 have two distinct 
real zeros?
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 3.3 Zeros, factors and remainders

Finding the zeros of polynomial functions is a feature of many problems 
in algebra, calculus and other areas of mathematics. In our analysis 
of quadratic functions in the previous section, we saw the connection 
between the graphical and algebraic approaches to finding zeros. 
Information obtained from the graph of a function can be used to help 
find its zeros and, conversely, information about the zeros of a polynomial 

35 The graph of a quadratic function passes through the points (23, 10), (   1 _ 4  , 2   9 __ 16  )

 and (1, 6). Express the function in the form f (x) 5 ax 2 1 bx 1 c, where a, b, c  R.

36 The maximum value of the function f (x) 5 ax 2 1 bx 1 c is 10. 
Given that f (3) 5 f (21) 5 2, find f (2).

37 Find the values of x for which 4x 1 1 , x 2 1 4.

38 Show that there is no real value t for which the equation 2x 2 1 (2 2 t)x 1 t 2 1 3 5 0 
has real roots.

39 Show that the two roots of ax 2 2 a2x 2 x 1 a 5 0 are reciprocals of each other.

40 Find the sum and product of the roots for each of the following quadratic 
equations.

 a) 2x 2 1 6x 2 5 5 0 b) x 2 5 1 2 3x c) 4x 2 2 6 5 0

 d) x 2 1 ax 2 2a 5 0 e) m(m 2 2) 5 4(m 1 1) f ) 3x 2   2 __ x   5 1

41 The roots of the equation 2x 2 2 3x 1 6 5 0 are a and b. Find a quadratic 

 equation with integral coefficients whose roots are   a __ 
b

   and   
b

 __ a  .

42 If a and b are the roots of the equation 3x 2 1 5x 1 4 5 0, find the values of the 
following expressions.

 a) a2 1 b2 b)   a __ 
b

   1   
b

 __ a  

 c) a3 1 b3        [Hint: factorise a3 1 b3 into a product of a binomial and a 
trinomial.]

43 Consider the quadratic equation x 2 1 8x 1 k 5 0 where k is a constant.

 a)  Find both roots of the equation given that one root of the equation is three 
times the other.

 b)  Find the value of k.

44 The roots of the equation x 2 1 x 1 4 5 0 are a and b.

 a) Without solving the equation, find the value of the expression   1 __ a   1   1 __ 
b

  .

 b) Find a quadratic equation whose roots are   1 __ a   and   1 __ 
b

  .

45 If a and b are roots of the quadratic equation 5x 2 2 3x 2 1 5 0, find a quadratic 
equation with integral coefficients which have the roots: 

 a)   1 __ 
a2   and   1 __ 

b2   b)   a
2
 __ 

b
   and   

b2

 __ a  
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function can be used to help sketch its graph. Results and observations 
from the last section lead us to make some statements about real zeros 
of all polynomial functions. Later in this section we will extend our 
consideration to imaginary zeros. The following box summarizes what we 
have observed thus far about the zeros of polynomial functions.

Real zeros of polynomial functions
If P is a polynomial function and c is a real number, then the following statements are 
equivalent.
• x 5 c is a zero of the function P.
• x 5 c is a solution (or root) of the polynomial equation P(x) 5 0.
• x 2 c is a linear factor of the polynomial P.
• (c, 0) is an x-intercept of the graph of the function P.

Polynomial division
As with integers, finding the factors of polynomials is closely related to 
dividing polynomials. An integer n is divisible by another integer m if m 
is a factor of n. If n is not divisible by m we can use the process of long 
division to find the quotient of the numbers and the remainder. For 
example, let’s use long division to divide 485 by 34.

14
34 ) 

____

 485  
34
145
136

9

  14 quotient
 3 34 divisor
 56
 420
 476
 1 9 remainder
 485 dividend

check:

The number 485 is the dividend, 34 is the divisor, 14 is the quotient and 
9 is the remainder. The long division process (or algorithm) stops when a 
remainder is less than the divisor. The procedure shown above for checking 
the division result may be expressed as

485 5 34 3 14 1 9

or in words as 

 dividend 5 divisor 3 quotient 1 remainder

The process of division for polynomials is similar to that for integers. If 
a polynomial D(x) is a factor of polynomial P(x), then P(x) is divisible 
by D(x). However, if D(x) is not a factor of P(x) then we can use a long 
division algorithm for polynomials to find a quotient polynomial Q(x) 
and a remainder polynomial R(x) such that P(x) 5 D(x)  Q(x) 1 R(x). 
In the same way that the remainder must be less than the divisor when 
dividing integers, the remainder must be a polynomial of a lower degree 
than the divisor when dividing polynomials. Consequently, when the 
divisor is a linear polynomial (degree of 1) the remainder must be of 
degree 0, i.e. a constant.
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Example 14 

Find the quotient Q(x) and remainder R(x) when P(x) 5 2x 3 2 5x 2 1 6x 2 3 
is divided by D(x) 5 x 2 2.

Solution

 2x  2 2 x 1 4
x 2 2 ) 

_________________

  2x  3 2 5x  2 1 6x 2 3  
 2x  3 2 4x  2  ← 2x  2(x 2 2)
 2 x  2 1 6x ← Subtract
 2 x  2 1 2x ← 2x(x 2 2)
  4x 2 3 ←Subtract
  4x 2 8 ← 4(x 2 2)
  5 ← Subtract

Thus, the quotient Q(x) is 2x  2 2 x 1 4 and the remainder is 5. Therefore, 
we can write 

 2x  3 2 5x  2 1 6x 2 3 5 (x 2 2)(2x  2 2 x 1 4) 1 5

This equation provides a means to check the result by expanding and 
simplifying the right side and verifying it is equal to the left side.

2x  3 2 5x  2 1 6x 2 3 5 (x 2 2)(2x  2 2 x 1 4) 1 5

 5 (2x  3 2 x  2 1 4x 2 4x  2 1 2x 2 8) 1 5

 5 2x  3 2 5x  2 1 6x 2 3

Taking the identity P(x) 5 D(x)  Q(x) 1 R(x) and dividing both sides by 

D(x) produces the equivalent identity   
P(x)

 ____ 
D(x)

   5 Q(x) 1   
R(x)

 ____ 
D(x)

  .

Hence, the result for Example 14 could also be written as 

  2x  3 2 5x  2 1 6x 2 3  _________________ 
x 2 2

   5 2x  2 2 x 1 4 1   5 _____ 
x 2 2

  .

Note that writing the result in this manner is the same as rewriting 

17 5 5 3 3 1 2 as   17
 __ 5   5 3 1   2 _ 5  , which we commonly write as the ‘mixed 

number’ 3  2 _ 5  .

Example 15 

Divide f  (x) 5 4x  3 2 31x 2 15 by 2x 1 5, and use the result to factor f  (x) 
completely.

Solution

 2x  2 2 5x 2 3
2x 1 5 ) 

____________________

  4x  3 1  0x  2 2 31x 2 15  
 4x  3 1 10x  2

 2 10x  2 2 31x
 2 10x  2 2 25x
  26x 2 15
  26x 2 15
  0

 Hint: A common error when 
performing long division with 
polynomials is to add rather than 
subtract during each cycle of the 
process.

 Hint: When performing long 
division with polynomials it is 
necessary to write all polynomials 
so that the powers (exponents) of 
the terms are in descending order. 
Example 12 illustrates that if there 
are any ‘missing’ terms then they 
have a coefficient of zero and a zero 
must be included in the appropriate 
location in the division scheme.
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Thus f  (x) 5 4x  3 2 31x 2 15 5 (2x 1 5)(2x  2 2 5x 2 3) 

… and factorizing the quadratic quotient (also a factor of f  (x)), gives

f  (x) 5 4x  3 2 31x 2 15 5 (2x 1 5)(2x  2 2 5x 2 3)

 5 (2x 1 5)(2x   1 1)(x 2 3)

This factorization would lead us to believe that the three zeros of f  (x) are 

x 5 2   5 _ 2  , x 5 2   1 _ 2   and x 5 3. Graphing f  (x) on our GDC and using 

the ‘trace’ feature confirms that all three values are zeros of the cubic 
polynomial.

Y1=4X^3–31X–15 Y1=4X^3–31X–15 Y1=4X^3–31X–15

X=-2.5 Y=0 X=-0.5 X=3Y=0 Y=0

Remainder and factor theorems
As illustrated by Examples 14 and 15, we commonly divide polynomials 
of higher degree by linear polynomials. By doing so we can often uncover 
zeros of polynomials as occurred in Example 15. Let’s look at what happens 
to the division algorithm when the divisor D(x) is a linear polynomial of 
the form x 2 c. Since the degree of the remainder R(x) must be less than 
the degree of the divisor (degree of one in this case) then the remainder 
will be a constant, simply written as R. Then the division algorithm for a 
linear divisor is the identity:

 P(x) 5 (x 2 c)  Q(x) 1 R

If we evaluate the polynomial function P at the number x 5 c, we obtain

 P(c) 5 (c 2 c)  Q(c) 1 R 5 0  Q(c) 1 R 5 R

Thus the remainder R is equal to P(c), the value of the polynomial P at 
x 5 c. Because this is true for any polynomial P and any linear divisor x 2 c, 
we have the following theorem.

The remainder theorem
If a polynomial function P(x) is divided by x 2 c, then the remainder is the value P(c).

Example 16 

What is the remainder when g(x) 5 2x  3 1 5x  2 2 8x 1 3 is divided by x 1 4?

Division algorithm for polynomials
If P(x) and D(x) are polynomials such that D(x)  0, and the degree of D(x) is less than or 
equal to the degree of P(x), then there exist unique polynomials Q(x) and R(x) such that 

P(x) 5 D(x)  Q(x) 1 R(x)

and where R(x) is either zero or of degree less than the degree of D(x). 
dividend divisor quotient remainder
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Solution

The linear polynomial x 1 4 is equivalent to x 2 (24). Applying the 
remainder theorem, the required remainder is equal to the value of g(24).

g(24) 5 2(24)3 1 5(24)2 2 8(24) 1 3 5 2(264) 1 5(16) 1 32 1 3 
  5 2128 1 80 1 35 5 213

Therefore, when the polynomial function g(x) is divided by x 1 4 the 
remainder is 213.

We found the value of g(24) in Example 16 by directly 
substituting 24 into g(x). Alternatively, we could have 
used the efficient method of synthetic substitution that we 
developed in Section 3.1 to evaluate g(24).

We could also have found the remainder by performing 
long division, which is certainly the least efficient method. 
However, there is a very interesting and helpful connection  
between the process of long division with a linear divisor 
and synthetic substitution.

Not only does synthetic substitution find the value of the  
remainder, but the numbers in the bottom row preceding 
the remainder (shown in red in Figure 3.11) are the same 
as the coefficients of the quotient (also in red) found from 
the long division process. Clearly, synthetic substitution 

is the most efficient method for finding the remainder and quotient when 
dividing a polynomial by a linear polynomial in the form x 2 c. When this 
method is used to find a quotient and remainder we refer to it as synthetic 
division.

A consequence of the remainder theorem is the factor theorem, which 
also follows intuitively from our discussion in the previous section about 
the zeros and factors of quadratic functions. It formalizes the relationship 
between zeros and linear factors of all polynomial functions with real 
coefficients.

The factor theorem
A polynomial function P(x) has a factor x 2 c if and only if P(c) 5 0.

To illustrate the efficiency of synthetic division, let’s answer the same 
problem posed in Example 14 (solution reproduced in Figure 3.12) in 
Example 17.

Example 17 

Find the quotient Q(x) and remainder R(x) when P(x) 5 2x  3 2 5x  2 1 6x 2 3 
is divided by D(x) 5 x 2 2.

It is important to understand 
that the factor theorem is a 
biconditional statement of 
the form ‘A if and only if B’. Such 
a statement is true in either 
‘direction’; that is, ‘If A then B’, 
and also ‘If B then A’ – usually 
abbreviated A → B and B → A, 
respectively. 

The numbers in the last row 
of the synthetic substitution 
process give both the 
remainder and the coefficients 
of the quotient when a 
polynomial is divided by a 
linear polynomial in the form 
x 2 c.

 2x  2 2 3x 1 4
x 1 4 ) 

_________________

  2x  3 1 5x  2 2 8x 1 3  
 2x  3 1 8x  2

 2 3x  2 2 8x
 2 3x  2 2 12x
  4x 1  3
  4x 1 16
        213

24 2 5 28 3

28 12 216

2 23 4 213 5 g(24)

Figure 3.11 Connection between 
synthetic substitution and long 
division.
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Solution

Using synthetic division

Since a divisor of degree 1 is dividing a polynomial of degree 3 then the 
quotient must be of degree 2 and, with all polynomials written so that their 
terms are descending in powers (exponents), we know that the numbers 
in the bottom row of the synthetic division scheme are the coefficients 
of a quadratic polynomial. Hence, the quotient is 2x  2 2 x 1 4 and the 
remainder is 5.

When one or more zeros of a given polynomial are known, applying the 
factor theorem and synthetic division is a very effective strategy to aid in 
finding factors and zeros of the polynomial.

Example 18 

Given that x 5 2   1 _ 2   and x 5 8 are zeros of the polynomial function 
h(x) 5 x  4 2   15

 __ 2  x  3 2 30x 2 16, find the other two zeros of h(x).

Solution

From the factor theorem, it follows that x 1    1 _ 2   and x 2 8 are factors of h(x). 
Dividing the 4th degree polynomial by the two linear factors in succession 
will yield a quadratic factor. We can find the zeros of this quadratic factor by 
using known factorizing techniques or by applying the quadratic formula.

2   1 _ 2  

8

1 2   15
 __ 2  0 230 216

2   1 _ 2  4 22 16

1 28 4 232 0

8 0 32

1 0 4 0

This row shows that x  4 2   15
 __ 2  x  3 2 30x 2 16 

5 (x 1   1 _ 2  )(x  3 2 8x   2 1 4x 2 32).

 
This row shows that x   3 2 8x   2 1 4x  2 32 
5 (x  2 8)(x   2 1 4).

 Hint: Example 18 indicates that if 
we divide the quartic polynomial  
x4 2   15

 __ 2  x3 2 30x 2 16 by x2 1 4 the 
remainder will be zero, since  
x2 1 4 is a factor. Synthetic division 
only works for linear divisors of the 
form x 2 c so this division could 
only be done by using the long 
division process.

2 2 25 6 23

4 22 8

2 21 4 5 remainder

coefficients of  
the quotient

    

 2x  2 2 x 1 4

x 2 2 ) 
________________

  2x  3 2 5x  2 1 6x 2 3  
 2x  3 2 4x  2  ← 2x  2(x 2 2)

 2 x  2 1 6x ← Subtract

 2 x  2 1 2x ← 2x(x 2 2)

  4x 2 3 ← Subtract

  4x 2 8 ← 4(x 2 2)

  5 ← Subtract

The quotient Q(x) is 2x  2 2 x 1 4 and the 

remainder is 5.

Figure 3.12 Solution for 
Example 14. 
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Hence, x  4 2   15
 __ 2  x  3 2 30x 2 16 5 (x 1   1 _ 2  )(x 2 8)(x  2 1 4).

The zeros of the quadratic factor x  2 1 4 must also be zeros of h(x).

x  2 1 4 5 0 ⇒ x  2 5 24 ⇒ x 5    √
___

 24   ⇒ x 5    √
__

 4     √
___

 21   ⇒ x 5 2i

Therefore, the other two remaining zeros of h(x) are x 5 2i and x 5 22i.

Note that the two imaginary zeros, x 5 2i and x 5 22i, of the polynomial 
in Example 18 are a pair of conjugates. In the previous section we asserted 
that imaginary zeros of a quadratic polynomial always come in conjugate 
pairs. Although it is beyond the scope of this book to prove it, we will 
accept that this is true for imaginary zeros of any polynomial.

Conjugate zeros
If a polynomial P has real coefficients, and if the complex number z 5 a 1 bi is a zero of 
P, then its conjugate z* 5 a 2 bi is also a zero of P.

Example 19 

Given that 2 2 3i is a zero of the polynomial 5x  3 2 19x  2 1 61x 1 13, find 
all remaining zeros of the polynomial.

Solution

Firstly, we need to consider what is the maximum number of zeros that 
the cubic polynomial can have. In the previous section we stated that every 
quadratic polynomial has exactly two complex zeros. It is reasonable to 
conjecture that a cubic will have three complex zeros. Since 2 2 3i is a zero, 
then 2 1 3i must also be a zero; and the third zero must be a real number. 
Although not explicitly stated in the remainder and factor theorems, 
both theorems are true for linear polynomials x 2 c where the number 
c is real or imaginary, i.e. it can be any complex number. Therefore, the 
cubic polynomial has factors x 2 (2 2 3i) and x 2 (2 1 3i). Rather than 
attempting to divide the cubic polynomial by one of these factors, let’s find 
the product of these factors and use it as a divisor.

[x 2 (2 2 3i)][x 2 (2 1 3i)] 5 [x 2 2 1 3i][x 2 2 2 3i]

 5 [(x 2 2) 1 3i][(x 2 2) 2 3i]

 5 (x 2 2)2  2 (3i)2

 5 x  2 2 4x 1 4 2 9i2

 5 x  2 2 4x 1 4 1 9

 5 x  2 2 4x 1 13

We can only use synthetic division with linear divisors, so we will need to 
divide 5x  3 2 19x  2 1 61x 1 13 by x  2 2 4x 1 13 using long division.
 5x 1 1
x  2 2 4x 1 13 ) 

____________________

  5x  3 2 19x  2 1 61x 1 13  
 5x  3 2 20x  2 1 65x
 x  2 2 4x 1 13
 x  2 2 4x 1 13
 0
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Thus, 5x  3 2 19x  2 1 61x 1 13 also has a linear factor of 5x 1 1 and 
therefore has a zero of x 5 2   1 _ 5  .

The zeros of the cubic polynomial are:

x 5 2 2 3i, x 5 2 1 3i and x 5 2   1 _ 5  .

The cubic polynomial in Example 19 had three complex zeros – one 
real and two imaginary. The quartic polynomial in Example 18 had four 
complex zeros – two real and two imaginary. In Example 15, we factored 
a cubic polynomial into a product of three linear polynomials, so the 
factor theorem says it will have three real zeros. And in the previous 
section we concluded that, provided we take into account the multiplicity 
of a zero (e.g. double root), all quadratic polynomials have two complex 
zeros – either two real zeros or two imaginary zeros. These examples are 
illustrations of the following useful fact.

Zeros of polynomials of degree n
A polynomial of degree n . 0 with complex coefficients has exactly n complex zeros, 
provided that each zero is counted as many times as its multiplicity.

Example 20 

Given that 2x 1 1 is a factor of the cubic function f  (x) 5 2x  3 2 15x  2 1 24x 1 16 

a) completely factorize the polynomial

b) find all of the zeros and their multiplicities

c) sketch its graph for the interval 21 < x < 6, given that the graph of the 
function has a turning point at x 5 1

Solution

a) Remember that synthetic division can only be used for linear divisors 
of the form x 2 c. Because 2x 1 1 5 2 ( x 1   1 _ 2   ) , then if 2x 1 1 is a factor 
x 1   1 _ 2   is also a factor. So we can set up synthetic division with a divisor 
of x 1   1 _ 2  , but we must take the following into account.

2x  3 2 15x  2 1 24x 1 16 5 (2x 1 1)  Q(x)

 5 2(x +   1 _ 2  )  Q(x)

 5  ( x 1   1 _ 2   )   2Q(x)

  2x  3 2 15x  2 1 24x 1 16  ___________________  
x 1   1 _ 2  

   5 2Q(x)

Since imaginary zeros always exist in conjugate pairs then if a polynomial with real 
coefficients has any imaginary zeros there can only be an even number of them. It 
logically follows then that a polynomial with an odd degree has at least one real zero. 
One consequence of this fact is that the graph of an odd-degree polynomial function 
must intersect the x-axis at least once. This agrees with our claim in Section 3.1 that 
the end behaviour of a polynomial function is influenced by its degree. Odd-degree 
polynomial functions will rise as x →  and fall as x → 2 (or the other way around 
if the leading coefficient is negative) producing the same general  shape as y 5 x  3, 
and hence will cross the x-axis at least once.

 Hint: Although for this 
course we restrict our study to 
polynomials with real coefficients, 
it is worthwhile to note that the 
statement about the number 
of complex zeros that exist for a 
polynomial of degree n also holds 
true for a polynomial with imaginary 
coefficients. For example, the 2nd 
degree polynomial 2ix 2 1 4 has 
zeros of 1 1 i and 21 2 i (verify 
this). Note that these two imaginary 
zeros are not conjugates. Only if a 
polynomial’s coefficients are real 
must its imaginary zeros occur in 
conjugate pairs.
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 When the polynomial is divided by x 1   1 _ 2  , the quotient will be two 
times the quotient from dividing by 2x 1 1. Dividing by two will give 
us the quotient that we want.

 
2   1 _ 2  2 215 24 16

21 8 216

2 216 32 0

  

 Hence, 2x  3 2 15x  2 1 24x 1 16 5  ( x 1   1 _ 2   ) (2x  2 2 16x 1 32)

 and 2x  3 2 15x  2 1 24x 1 16 5 2 ( x 1   1 _ 2   )   1 _ 2  (2x  2 2 16x 1 32)
  5 (2x 1 1)(x  2 2 8x 1 16) Factorize the quadratic factor.

  5 (2x 1 1)(x 2 4)(x 2 4)  x  2 2 8x 1 16 fits the pattern 
x  2 1 2ax 1 a  2 5 (x 1 a)2

  5 (2x 1 1)(x 2 4)2

b) The zeros of 2x  3 2 15x  2 1 24x 1 16 are x 2   1 _ 2   and x 5 4 (multiplicity 
of two).

c) Because the polynomial is of degree 3 and its leading coefficient is 
positive, the end behaviour of the graph will be such that the graph 
rises as x →  and falls as x → 2. That means the general shape of 
the graph will be a  shape with one maximum and one minimum as 
shown right.

 Find the coordinates of the given turning point by evaluating f  (1) using 
synthetic substitution.

 Since f  (0) 5 16 then the y-intercept is (0, 16), which means that (1, 27) is a 
maximum point. Because the zero x 5 4 has a multiplicity of two, then we 
know from the previous chapter on quadratic functions that the graph will 
be tangent to the x-axis at the point (4, 0). The other x-intercept is  ( 2   1 _ 2  , 0 ) . 
We can now make a very accurate sketch of the function.
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y � 2x3 � 15x2 � 24x � 16(0,16)

(1,27)
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(�   ,0)1
 2

turning point
maximum

turning point
minimum

1 2 215 24 16

2 213 11

2 213 11 27 ⇒ f (1) = 27. Hence, the point (1, 27) 
is on the graph.
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Example 21 

Find a polynomial P with integer coefficients of least degree having zeros 
of x 5 2, x 5 2   1 _ 3   and x 5 1 2 i.

Solution

Given that 1 2 i is a zero then its conjugate 1 1 i must also be a zero. Thus, 
the required polynomial has four complex zeros, and four corresponding 
factors. The four factors are:

x 2 2, x 1   1 _ 3  , x 2 (1 2 i) and x 2 (1 1 i)

P(x) 5 (x 2 2) ( x 1   1 _ 3   ) [x 2 (1 2 i)][x 2 (1 1 i)]

5  ( x  2 2   5 _ 3  x 2   2 _ 3   ) [(x 2 1) 1 i][(x 2 1) 2 i] Multiplying by 3 does not change the zeros …

5 (3x  2 2 5x 2 2)[(x 2 1)2 2 i  2] … but does guarantee integer coefficients.

 5 (3x  2 2 5x 2 2)(x  2 2 2x 1 1 1 1)

 5 (3x  2 2 5x 2 2)(x  2 2 2x 1 2)

 5 3x  4 2 6x  3 1 6x  2 2 5x  3 1 10x  2 2 10x 2 2x  2 1 4x 2 4

P(x) 5 3x  4 2 11x  3 1 14x  2 2 6x 2 4

There is a theorem called the 
fundamental theorem of 
algebra that guarantees that 
every polynomial function of 
non-zero degree with complex 
coefficients has at least one 
complex zero. The theorem 
was first proved by the famous 
German mathematician Carl 
Friedrich Gauss (1777–1855). 
Many of the results in this section 
on the zeros of polynomials are 
directly connected with this 
important theorem.

We know how to find the exact zeros of linear and quadratic functions. The quadratic 
formula is a general rule that gives the exact values of all complex zeros of any 
quadratic polynomial using radicals and the coefficients of the polynomial. We also 
know how to use our GDC to approximate real zeros. In this chapter, we have gained 
techniques to search for, or verify, the zeros of polynomial functions of degree 3 
or higher. This leads us to an important question: Can we find exact values of all 
complex zeros of any polynomial function of 3rd degree and higher? This question 
was answered for cubic and quartic polynomials in the 16th century when the 
Italian mathematician Girolamo Cardano (1501–1576) presented a ‘cubic formula’ 
and a ‘quartic formula’. These formulae were methods for finding all complex zeros 
of 3rd degree and 4th degree polynomials using only radicals and coefficients. 
Cardano’s presentation of the formulae depended heavily on the work of other Italian 
mathematicians. Scipione del Ferro (1465–1526) is given credit as the first to find 
a general algebraic solution to cubic equations. Cardano’s method of solving any 
cubic was obtained from Niccolo Fontana (1500–1557) known as ‘Tartaglia’. Similarly, 
Cardano solved quartic equations using a method that he learned from his own 
student Lodovico Ferrari (1522–1565). The methods for solving cubic and quartic 
equations are quite complicated and are not part of this course. The question of 
finding formulae for exact zeros of polynomials of degree 5 (quintic) and higher was 
not resolved until the early 19th century. In 1824, a young Norwegian mathematician, 
Niels Henrik Abel (1802–1829), proved that it was impossible to find an algebraic 
formula for a general quintic equation. An even more remarkable discovery was 
made by the French mathematician Evariste Galois (1811–1832) who died in a pistol 
duel before turning 21. Galois proved that for any polynomial of degree 5 or greater, 
it is not possible, except in special cases, to find the exact zeros by using only radicals 
and the polynomial’s coefficients. Mathematicians have developed sophisticated 
methods of approximating the zeros of polynomial equations of high degree and 
other types of equations for which there are no algebraic solution methods. These are 
studied in a branch of advanced mathematics called numerical analysis.
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Sum and product of the roots of any 
polynomial equation
In the previous section, we found a way to express the sum and product of 
the roots of a quadratic equation, ax 2 1 bx 1 c 5 0, in terms of a, b and c.
It is natural to wonder whether a similar method could be found for 
polynomial equations of degree greater than two. 

Using the same approach as in the previous section for quadratic equations, 
let’s consider the general cubic equation ax 3 1 bx2 1 cx 1 d 5 0 whose roots 
are x 5 a, x 5 b and x 5 g. It follows that this general cubic equation can be 

written in the form x 3 1 b _a x 2 1 c _a x 1 d __a  5 0. Applying the Factor Theorem, 
it can also be written in the form (x 2 a)(x 2 b)(x 2 g) 5 0. Expanding 
the brackets gives:

(x 2 a)(x 2 b)(x 2 g) 5 x 3 2 ax 2 2 bx 2 2 gx 2 1 abx 1 bgx 1 agx         
                                              2 abg 
                                          5 0

x 3 2 (a 1 b 1 g) x 2 1 (ab 1 bg 1 ag)x 2 abg 5 0

Equating coefficients for x 3 1 b _a  x 2 1 c _a x 1 d __a  5 0 and x 3 2 (a 1 b 1 g)x 2 
1 (ab 1 bg 1 ag)x 2 abg 5 0 gives us the following results for the sum 
and product of the roots for any cubic equation.

a 1 b 1 g 5 2b _
a

   and abg 5 2d __
a

 

This result for the sum and product of the roots of any cubic equation 
looks very similar to that for any quadratic equation. The only  
difference is that the product of the roots, abg, is the opposite of the 

quotient  constant term  ______________
leading coefficient

 . 

For the general quartic equation ax 4 1 bx 3 1 cx 2 1 dx 1 e 5 0 with roots 
a, b, g and , the factored form of the equation expands as follows:

(x 2 a)(x 2 b)(x 2 g)(x 2 ) = 
x 4 2 (a 1 b 1 g 1 )x 2 1 (ab 1 ag 1 a 1 bg 1 b 1 g)x 2 
(abg 1 ab 1 ag 1 bg) 1 abg 5 0

Since this is equivalent to x 4 1 b _a  x 3 1 c _a  x 2 1 d __a  x 1 e _a  5 0, then the sum 
and product of the roots for any quartic equation are: 

a 1 b 1 g 1  5 2b _
a

  and abg 5 e _a .

These results for the sum and product of roots for polynomial equations 
of degree 2 (quadratic), degree 3 (cubic) and degree 4 (quartic) lead to 
the following result for any polynomial function of degree n that we state 
without a formal proof.

Sum and product of the roots (zeros) of any polynomial equation

For the polynomial equation of degree n given by P(x) 5 an x n 1 an 2 1x n 2 1 1 … 1 

a1x 1 a0 5 0, an ≠ 0 the sum of the roots is 2  an 2 1 ____ 
an

   and the product of the roots 

is   
(21)na0 ______ an

  .
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Example 22 

Two of the roots of the equation x 3 2 3x 2 1 kx 1 75 5 0 are opposites. Find 
the values of all the roots and the constant k.

Solution

Let the three unknown roots be represented by a, 2a and b.

Then a 2 a 1 b 5 3 ⇒ b 5 3 and a(2a)b 5 275 ⇒ a(2a)(3) 5 275 ⇒ 
23a2 5 275 ⇒ a2 5 25 ⇒ a 5 ±5

Therefore, the three roots are 5, 25 and 3.

To find the value of k, write the cubic in factored form and expand. 

(x 2 3)(x 1 5)(x 2 5) 5 0 ⇒ (x 2 3)(x 2 2 25) 5 0 
                                               ⇒ x 3 2 3x 2 2 25x 1 75 5 0

Therefore, k 5 225.

Example 23 

Consider the equation 2x 4 2 x 3 2 4x 2 1 10x 2 4 5 0. Given that one of the 
zeros of the equation is r1 5 1 1 i, find the other three zeros r2, r3 and r4.

Solution

There are other strategies (e.g. using factors and polynomial division) but it 
is more efficient to apply what we know about the sum and product of the 
roots (zeros) of a polynomial equation.

Firstly, since r1 5 1 1 i is a zero, then its conjugate must also be a zero; 
hence r2 5 1 2 i.

From the fact that the sum of the roots is – 
an 2 1 ____an

  , then r1 1 r2 1 r3 1 r4 5 – 
a3 __a4

 . 

Substituting in known values gives 1 1 i 1 1 2 i 1 r3 1 r4 5 221 ___
2

  
⇒ 2 1 r3 1 r4 5 1 _

2  ⇒ r3 1 r4 5 23 _
2

 

Also, since the product of the roots is 
(21)n a0 _______an

  , then r1r2r3r4 5 
(21)n a0 _______an

  .  

Substituting gives:

(1 1 i)(1 2 i)r3r4 5 
(21)4(24)

 _________
2   ⇒ (1 2 i 2)r3r4 5 22 

 ⇒ 2r3r4 5 22 
 ⇒ r3r4 5 21

To find r3 and r3, we need to use the pair of equations { r3 1 r4 5 23 _
2

 
r3r4 5 21   

Solving for r3 in the first equation gives r3 5 2r4 2 3 _
2

 .

Substituting into the other equation gives: ( 2r4 2 3 _
2 ) r4 5 21

 ⇒ r4
2 1 3 _

2  r4 2 1 5 0

 ⇒ 2r4
2 1 3r4 2 2 5 0

 ⇒ (2r4 2 1)(r4 1 2) 5 0

 ⇒ r4 5 1 _
2  or r4 5 2 2
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If r4 5 1 _
2 , then r3 5 2 1 _

2  2 3 _
2  5 22. [ And if r4 5 22, then r3 5 1 _

2 ]
Therefore the other three zeros are 1 2 i, 1 _

2  and 22.

In questions 1–5, two polynomials P and D are given. Use either synthetic division or 
long division to divide P(x) by D(x), and express P(x) in the form 
P(x) 5 D(x)  Q(x) 1 R(x).

 1 P(x) 5 3x  2 1 5x 2 5,  D(x) 5 x 1 3

 2 P(x) 5 3x  4 2 8x  3 1 9x 1 5,  D(x) 5 x 2 2

 3 P(x) 5 x  3 2 5x  2 1 3x 2 7,  D(x) 5 x 2 4

 4 P(x) 5 9x  3 1 12x  2 2 5x 1 1,  D(x) 5 3x 2 1

 5 P(x) 5 x  5 1 x  4 2 8x  3 1 x 1 2,  D(x) 5 x  2 1 x 2 7

 6 Given that x 2 1 is a factor of the function f  (x  ) 5 2x  3 2 17x  2 1 22x 2 7 
factorize f completely.

 7 Given that 2x 1 1 is a factor of the function f  (x  ) 5 6x  3 2 5x  2 2 12x 2 4 
factorize f completely.

 8 Given that x 1   2 _ 3   is a factor of the function f  (x  ) 5 3x  4 1 2x  3 2 36x 2 1 24x 1 32 
factorize f completely.

In questions 9–12, find the quotient and the remainder.

 9   x  2 2 5x 1 4 ___________ x 2 3
   10   x

3 1 2x  2 1 2x 1 1  ________________ x 1 2
  

11   9x  2 2 x 1 5 ___________ 
3x  2 2 7x    12   x  5 1 3x 3 2 6 ___________ x 2 1

  

In questions 13–16, use synthetic division and the remainder theorem to evaluate P(c).

13 P(x) 5 2x  3 2 3x  2 1 4x 2 7, c 5 2

14 P(x) 5 x  5 2 2x  4 1 3x  2 1 20x 1 3, c 5 21

15 P(x) 5 5x  4 1 30x  3 2 40x  2 1 36x 1 14, c 5 27

16 P(x) 5 x  3 2 x 1 1, c 5   1 _ 4  

17 Given that x 5 26 is a zero of the polynomial x  3 1 2x  2 2 19x 1 30 find all 
remaining zeros of the polynomial.

18 Given that x 5 2 is a double root of the polynomial x  4 2 5x  3 1 7x2 2 4 find all 
remaining  zeros of the polynomial.

19 Find the values of k such that 23 is a zero of f  (x) 5 x  3 2 x  2 2 k  2x.

20 Find the values of a and b such that 1 and 4 are zeros of 
f  (x) 5 2x 4 2 5x  3 2 14x  2 1 ax 1 b.

In questions 21–23, find a polynomial with real coefficients satisfying the given 
conditions.

21 Degree of 3; and zeros of 22, 1 and 4

22 Degree of 4; and zeros of 21, 3 (multiplicity of 2) and 22

23 Degree of 3; and 2 is the only zero (multiplicity of 3)

In questions 24–26, find a polynomial of lowest degree with real coefficients and the 
given zeros.

24 x 5 21 and x 5 1 2 i

Exercise 3.3
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25 x 5 2, x 5 24 and x 5 23i

26 x 5 3 1 i and x 5 1 2 2i

27 Given that x 5 2 2 3i is a zero of f  (x) 5 x  3 2 7x  2 1 25x 2 39 find the other 
remaining zeros.

28 The polynomial 6x  3 1 7x  2 1 ax 1 b has a remainder of 72 when divided by 
x 2 2 and is exactly divisible (i.e. remainder is zero) by x 1 1.

a) Calculate a and b.
b) Show that 2x 2 1 is also a factor of the polynomial and, hence, find the third 

factor.

29 The polynomial p(x) 5 (ax 1 b)3 leaves a remainder of 21 when divided by 
x 1 1, and a remainder of 27 when divided by x 2 2. Find the values of the real 
numbers a and b.

30 The quadratic polynomial x  2 2 2x 2 3 is a factor of the quartic polynomial 
function f  (x) 5 4x  4 2 6x  3 2 15x  2 2 8x 2 3. Find all of the zeros of the function 
f. Express the zeros exactly and completely simplified.

31 x 2 2 and x 1 2 are factors of x  3 1 ax  2 1 bx 1 c, and it leaves a remainder of 10 
when divided  by x 2 3. Find the values of a,b and c.

32 Let P (x) 5 x 3 1 px  2 1 qx 1 r. Two of the zeros of P(x) 5 0 are 3 and 1 1 4i. Find 
the value  of p, q and r.

33 When divided by (x 1 2) the expression 5x  3 2 3x 2 1 ax 1 7 leaves a remainder 
of R. When  the expression 4x  3 1 ax  2 1 7x 2 4 is divided by (x 1 2) there is a 
remainder of 2R. Find the value of the constant a.

34 The polynomial x  3 1 mx  2 1 nx 2 8 is divisible by (x 1 1 1 i). Find the value of 
m and n.

35 Given that the roots of the equation x  3 2 9x  2 1 bx 2 216 5 0 are consecutive 
terms in a geometric sequence, find the value of b and solve the equation.

36 a)  Prove that when a polynomial P(x) is divided by ax 2 b the remainder is 

  P (   b __ 
a

   ) .

b) Hence, find the remainder when 9x  3 2 x 1 5 is divided by 3x 1 2.

37 Find the sum and product of the roots of the following equations.

 a) x 4 2   2 __ 3  x 3 1 3x 2 2 2x 1 5 5 0

 b) (x 2 2)3 5 x 4 2 1

 c)   3 ______ x 2 1 2
   5   2x 2 2 x _______ 

2x 5 1 1
  

38 If a, b and g are the three roots of the cubic equation ax 3 1 bx 2 1 cx 1 d 5 0, 

show that ab 1 ag 1 bg 5   c __ a  .

39 One of the zeros of the equation x 3 2 63x 1 162 5 0 is double another zero. 
Find all three zeros.

40 Find the three zeros of the equation x 3 2 6x 2 2 24x 1 64 5 0 given that 
they are consecutive terms in a geometric sequence. [Hint: let the zeros be 
represented by   a __ r  , a, ar where r is the common ratio.]

41 Consider the equation x 5 2 12x 4 1 62x 3 2 166x 2 1 229x 2 130 5 0. 
Given that two of the zeros of the equation are x 5 3 2 2i and x = 2, find the 
remaining three zeros.

42 Find the value of k such that the zeros of the equation x 3 2 6x 2 1 kx 1 10 5 0 
are in arithmetic progression, that is, they can be represented by a, a 1 d and 
a 1 2d for some constant d. [Hint: use the result from question 38.]

43 Find the value of k if the roots of the equation x 3 1 3x 2 2 6x 1 k 5 0 are in 
geometric progression.
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 Rational functions

Another important category of algebraic functions is rational functions, 

which are functions in the form R(x) 5   
f  (x)

 ____ 
g(x)

   where f and g are polynomials 

and the domain of the function R is the set of all real numbers except the 
real zeros of polynomial g in the denominator. Some examples of rational 
functions are

p(x) 5   1 _____ x 2 5  ,   q(x) 5   x 1 2 _____________  
(x 1 3)(x 2 1)

  ,  and  r(x) 5   x ______ 
x  2 1 1

  

The domain of p excludes x 5 5, and the domain of q excludes x 5 23 and 
x 5 1. The domain of r is all real numbers because the polynomial x  2 1 1 
has no real zeros. 

Example 24 

Find the domain and range of h(x) 5   1 _____ 
x 2 2

  . Sketch the graph of h.

Solution

Because the denominator is zero when x 5 2, the domain of h is all real 
numbers except x 5 2, i.e. x  R, x  2. Determining the range of the 
function is a little less straightforward. It is clear that the function could 
never take on a value of zero because that will only occur if the numerator 
is zero. And since the denominator can have any value except zero it seems 
that the function values of h could be any real number except zero. To 
confirm this and to determine the behaviour of the function (and shape of 
the graph), some values of the domain and range (pairs of coordinates) are 
displayed in the tables below.

x approaches 2 from the left x approaches 2 from the right

x h(x)

298 20.01

28 20.1

0 20.5

1 21

1.5 22

1.9 210

1.99 2100

1.999 21000

 
x h(x)

102 0.01

12 0.1

4 0.5

3 1

2.5 2

2.1 10

2.01 100

2.001 1000

The values in the tables provide clear evidence that the range of h is all 
real numbers except zero, i.e. h(x)  R, h(x)  0. The values in the tables 
also show that as x → 2, h(x) → 0 from below (sometimes written 
h(x) → 02) and as x → 1, h(x) → 0 from above (h(x) → 01). It follows 

 Hint: A fraction is only zero if its 
numerator is zero.

3.4       
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that the line with equation y 5 0 (the x-axis) is a horizontal asymptote 
for the graph of h. As x → 2 from the left (sometimes written x → 22), 
h(x) appears to decrease without bound, whereas as x → 2 from the right 
(x → 21), h(x) appears to increase without bound. This indicates that 
the graph of h will have a vertical asymptote at x 5 2. This behaviour is 
confirmed by the graph at left.

Horizontal and vertical asymptotes
The line y 5 c is a horizontal asymptote of the graph of the function f if at least one of 
the following statements is true:
• as x → 1, then f  (x) → c1 • as x → 2, then f  (x) → c1

• as x → 1, then f  (x) → c2 • as x → 2, then f  (x) → c2

The line x 5 d is a vertical asymptote of the graph of the function f if at least one of 
the following statements is true:
• as x → d1, then f  (x) → 1 • as x → d1, then f  (x) → 2

• as x → d2, then f  (x) → 1 • as x → d2, then f  (x) → 2

Example 25 

Consider the function f  (x) 5   3x  2 2 12 __________ 
x  2 1 3x 2 4

  . Sketch the graph of f and 

identify any asymptotes and any x- or y-intercepts. Use the sketch to 
confirm the domain and range of the function.

Solution

Firstly, let’s completely factorize both the numerator and denominator.

f  (x) 5   3x  2 2 12 __________ 
x  2 1 3x 2 4

   5   
3(x 1 2)(x 2 2)

  _____________  
(x 2 1)(x 1 4)

  

Axis intercepts:

The x -intercepts will occur where the numerator is zero. Hence, the 
x -intercepts are (22, 0) and (2, 0). A y-intercept will occur when x 5 0. 

f  (0) 5   
3(2)(22)

 ________ 
(21)(4)

   5 3, so the y-intercept is (0, 3).

Vertical asymptote(s):

Any vertical asymptote will occur where the denominator is zero, that is, 
where the function is undefined. From the factored form of f we see that 
the vertical asymptotes are x 5 1 and x 5 24. We need to determine if 
the graph of f falls (f  (x) → 2) or rises (f  (x) → ) on either side of each 
vertical asymptote. It’s easiest to do this by simply analyzing what the sign 
of h will be as x approaches 1 and 24 from both the left and right. For 
example, as x → 12 we can use a test value close to and to the left of 1 (e.g. 
x 5 0.9) to check whether f  (x) is positive or negative to the left of 1.

f  (x) 5   
3(0.9 1 2)(0.9 2 2)

  ________________  
(0.9 2 1)(0.9 1 4)

   ⇒   
(1)(2)

 _______ 
(2)(1)

   ⇒ f  (x) . 0 ⇒ as x → 12,

  then f  (x) → 1 (rises)

As x → 11 we use a test value close to and to the right of 1 (e.g. x 5 1.1) to 
check whether f  (x) is positive or negative to the right of 1.

x

y

�5

0

5

vertical
asymptote x � 2

horizontal
asymptote
x-axis, y � 0

�1 1 2 3 54
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f  (x) 5   
3(1.1 1 2)(1.1 2 2)

  ________________  
(1.1 2 1)(1.1 1 4)

   ⇒   
(1)(2)

 _______ 
(1)(1)

   ⇒ f  (x) , 0 ⇒ as x → 11, 

    then f  (x) → 2 (falls)

Conducting similar analysis for the vertical asymptote of x 5 24, produces:

f  (x) 5   
3(24.1 1 2)(24.1 2 2)

  ____________________  
(24.1 2 1)(24.1 1 4)

   ⇒   
(2)(2)

 _______ 
(2)(2)

   ⇒ f  (x) . 0 ⇒ as x → 42, 

    then f  (x) → 1 (rises)

f  (x) 5   
3(23.9 1 2)(23.9 2 2)

  ____________________  
(23.9 2 1)(23.9 1 4)

   ⇒   
(2)(2)

 _______ 
(2)(1)

   ⇒ f  (x) , 0 ⇒ as x → 41, 

    then f  (x) → 2 (falls)

Horizontal asymptote(s):

A horizontal asymptote (if it exists) is the value that f  (x) approaches as 
x → . To find this value, we divide both the numerator and 
denominator by the highest power of x that appears in the denominator 
(x  2 for function f   ).

f  (x) 5   
  3x  2 ___ 
x  2

   2   12 ___ 
x  2

  
 ___________  

  x  2 __ 
x  2

   1   3x __ 
x  2

   2   4 __ 
x  2

  
   then, as x →  , f (x)5   3 2 0 _________ 

1 1 0 2 0
   5 3 

Hence, the horizontal asymptote is y 5 3.

Sketch of graph:

Now we know the behaviour (rising or falling) of the function on  
either side of each vertical asymptote and that the graph will 
approach the horizontal asymptote as x → , an accurate sketch of 
the graph can be made as shown right.

Domain and range:

Because the zeros of the polynomial in the denominator are x 5 1 
and x 5 24, the domain of f is all real numbers except 1 and 24. 
From our analysis and from the sketch of the graph, it is clear that between 
x 5 24 and x 5 1 the function takes on all values from 2 to 1, 
therefore the range of f is all real numbers.

We are in the habit of cancelling factors in algebraic expressions (Section 1.5), 
such as 

   x  2 2 1 ______ 
x 2 1

   5   
(x 1 1)(x 2 1)

  _____________ 
x 2 1

   5 x 1 1

However, the function f  (x) 5   x  2 2 1 ______ 
x 2 1

   and the function g(x) 5 x 1 1 are 

not the same function. The difference occurs when x 5 1. 

f  (1) 5   1
2 2 1 ______ 

1 2 1
   5   0 __ 

0
  , which is undefined, and g(1) 5 1 1 1 5 2. So, 1 is not 

in the domain of f  but it is in the domain of g. As we might expect the 

 Hint: The farther the number n is 
from 0, the closer the number   1 __ n   is to 
0. Conversely, the closer the number 
n is to 0, the farther the number   1 __ n   is 
from 0. These facts can be expressed 
simply as:

  1 ___ 
BIG

   5 little and   1 ____ 
little

   5 BIG 

They can also be expressed more 
mathematically using the concept 
of a limit expressed in limit notation 

as:   lim    
n→

    1 __ n   5 0 and  lim    
n→0

     1 __ n   5 .

Note: Infinity is not a number, so 

 lim    
n→0

     1 __ n   actually does not exist, 

but writing  lim    
n→0

     1 __ n   5  expresses 

the idea that   1 __ n   increases without 

bound as n approaches 0.

x

y
x � 1

y � 3

x � �4

�4

�2

2

0

4

6

8

�8�10�12 �6 �4 �2 2 4 6
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graphs of the two functions appear identical, but upon closer inspection it 
is clear that there is a ‘hole’ in the graph of f at the point (1, 2). Thus, f is a 
discontinuous function but the polynomial function g is continuous. f and g 
are different functions.

x

y
f(x) �

�2

�1

1

0

2

3

4

�3 �2 �1 1 2 3 4

hole

x2 � 1
x � 1

x

y
g(x) � x � 1

�2

�1

1

0

2

3

4

�3 �2 �1 1 2 3 4

In working with rational functions, we often assume that every linear 
factor that appears in both the numerator and in the denominator has 

been cancelled. Therefore, for a rational function in the form   
f  (x)

 ____ 
g(x)

  , we can 

usually assume that the polynomial functions f and g have no common 
factors.

Example 26 

Find any asymptotes for the function p(x) 5   x  2 2 9 ______ x 2 4  .

Solution

The denominator is zero when x 5 4, thus the line with equation x 5 4 
is a vertical asymptote. Although the numerator x  2 2 9 is not divisible 
by x 2 4, it does have a larger degree. Some insight into the behaviour of 
function p may be gained by dividing x 2 4 into x  2 2 9. Since the degree 
of the numerator is one greater than the degree of the denominator, the 
quotient will be a linear polynomial. Recalling from the previous section 

that   
P(x)

 ____ 
D(x)

   5 Q(x) 1   
R(x)

 ____ 
D(x)

  , where Q and R are the quotient and remainder, 

we can rewrite p(x) as a linear polynomial plus a fraction.

Since the denominator is in the form x 2 c we can carry out the division 
efficiently by means of synthetic division.

4 1 0 29

4 16

1 4 7

 Hence, p(x) 5   x  2 2 9 _____ 
x 2 4   5 x 1 4 1   7 ______ 

x 2 4   .

As x → , the fraction   7 _____ x 2 4   → 0. This tells us about the end behaviour 

of function p, namely that the graph of p will get closer and closer to 
the line y 5 x 1 4 as the values of x get further away from the origin. 
Symbolically, this can be expressed as follows: as x → , p(x) → x 1 4. 

 Hint: Try graphing   x  2 2 1 ______ x 2 1
   on 

your GDC and zooming in closely to 
the region around the point (1, 2). 
Can you see the ‘hole’?
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We can graph both the rational function p(x) and the line y 5 x 1 4 on 
our GDC to visually confirm our analysis. 

Plot1
Y1

Y2
Y3=
Y4=
Y5=
Y6=

(X^2–9) (X–4

X+4
)

Plot2 Plot3
=
=

WINDOW
Xmin=-5
Xmax=15

Xres=1

Xscl=5

Yscl=5

Ymin=-10 
Ymax=25 

y � x � 4

If a line is an asymptote of a graph but it is neither horizontal nor vertical, 
it is called an oblique asymptote (sometimes called a slant asymptote). 

The graph of any rational function of the form   
f  (x)

 ____ 
g(x)

  , where the degree of 

function f is one more than the degree of function g will have an oblique 
asymptote.

Using Example 25 as a model, we can set out a general procedure 
for analyzing a rational function leading to a sketch of its graph and 
determining its domain and range.

Analyzing a rational function R(x) 5   
f  (x)

 ____ 
g(x)

   given functions f and g have no common 
factors

1. Factorize: Completely factorize both the numerator and denominator.

2. Intercepts: A zero of f will be a zero of R and hence an x-intercept of the graph of R. 
The y-intercept is found by evaluating R(0).

3. Vertical asymptotes: A zero of g will give the location of a vertical asymptote (if any). 
Then perform a sign analysis to see if R(x) → 1 or R(x) → 2 on either side of each 
vertical asymptote.

4. Horizontal asymptote: Find the horizontal asymptote (if any) by dividing both f and g 
by the highest power of x that appears in g, and then letting x → .

5. Oblique asymptotes: If the degree of f is one more than the degree of g, then the 
graph of R will have an oblique asymptote. Divide g into f to find the quotient Q(x) 
and remainder. The oblique asymptote will be the line with equation y 5 Q(x).

6. Sketch of graph: Start by drawing dashed lines where the asymptotes are located. 
Use the information about the intercepts, whether Q(x) falls or rises on either side of a 
vertical asymptote, and additional points as needed to make an accurate sketch.

7. Domain and range: The domain of R will be all real numbers except the zeros of g. 
You need to study the graph carefully in order to determine the range. Often, but not 
always (as in Example 25), the value of the function at the horizontal asymptote will 
not be included in the range. 

End behaviour of a rational function
Let R be the rational function given by 

R(x) 5   
f (x)

 ____ 
g(x)

   5   
anx n 1 an 2 1xn 2 1 1…1 a1x 1 a0   ____________________________   
bmxm 1 bm 2 1x m 2 1 1…1 b1x 1 b0

  

where functions f and g have no common factors. Then the following holds true:

1. If n , m, then the x-axis (line y 5 0) is a horizontal asymptote for the graph of R.

2. If n 5 m, then the line y 5   
an ___ 
bm

   is a horizontal asymptote for the graph of R.

3. If n . m, then the graph of R has no horizontal asymptote. However, if the degree of f 
is one more than the degree of g, then the graph of R will have an oblique asymptote.
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Exercise 3.4

In questions 1–10, sketch the graph of the rational function without the aid of your 
GDC. On your sketch clearly indicate any x- or y-intercepts and any asymptotes 
(vertical, horizontal or oblique). Use your GDC to verify your sketch.

 1 f  (x) 5   1 _____ x 1 2    2 g(x) 5   3 _____ x 2 2  

 3 h(x) 5   1 2 4x ______ 1 2 x    4 R(x) 5   x ______ x  2 2 9
  

 5 p(x) 5   2 ___________ x  2 1 2x 2 3
    6 M(x) 5   x  2 1 1 ______ x   

 7 f (x) 5   x ___________ x  2 1 4x 1 4
    8 h(x) 5   x  2 1 2x _______ x 2 1

  

 9 g(x) 5   2x 1 8 ___________ x  2 2 x 2 12
   10 C(x) 5   x 2 2 _______ x  2 2 4x  

In questions 11–14, use your GDC to sketch a graph of the function, and state the 
domain and range of the function.

11 f  (x) 5   2x  2 1 5 _______ x  2 2 4
   12 g(x) 5   x 1 4 ___________ x  2 1 3x 2 4

  

13 h(x) 5   6 ______ x  2 1 6
   14 r(x) 5   x  2 2 2x 1 1 ___________ x 2 1

  

In questions 15–18, use your GDC to sketch a graph of the function. Clearly label any 
x- or y-intercepts and any asymptotes.

15 f  (x) 5   2x 2 5 _____________  
2x  2 1 9x 2 18

   16 g(x) 5   x  2 1 x 1 1 __________ x 2 1
  

17 h(x) 5   3x  2 __________ x  2 1 x 1 2
   18 g(x) 5   1 _______________  x  3 2 x  2 2 4x 1 4

  

19 If a, b and c are all positive, sketch the curve y 5   x 2 a ____________  
(x 2 b)(x 2 c)

   for each of the 
following  conditions:

a) a , b , c b) b , a , c c) b , c , a

20 A drug is given to a patient and the concentration of the drug in the 
bloodstream is carefully monitored. At time t > 0 (in minutes after patient 
receiving the drug), the concentration, in milligrams per litre (mg/l) is given by 
the following function.

C(t) 5   25t _____ 
t 2 1 4

  

a) Sketch a graph of the drug concentration (mg/l) versus time (min).

b) When does the highest concentration of the drug occur, and what is it?

c) What eventually happens to the concentration of the drug in the 
bloodstream?

d) How long does it take for the concentration to drop below 0.5 mg/l?
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 3.5 Other equations and inequalities 

We have studied some approaches to analyzing and solving polynomial 
equations in this chapter. Some problems lead to equations with 
expressions that are not polynomials, for example, expressions with 
radicals, fractions, or absolute value. Problems in mathematics often do 
not involve equations but inequalities. We need to be familiar with effective 
methods for solving inequalities involving polynomials – and again, 
radicals, fractions, or absolute value.

Equations involving a radical
Example 27 – Solving an equation with a single radical expression

Solve for x :   √
______

 3x 1 6   5 2x 1 1

Solution

Squaring both sides gives 3x 1 6 5 (2x 1 1)2

 3x 1 6 5 4x  2 1 4x 1 1

 4x  2 1 x 2 5 5 0

Factorizing: (4x 1 5)(x 2 1) 5 0 

 x 5 2   5 _ 4   or x 5 1

Check both solutions in the original equation:

When x 5 2   5 _ 4  ,   √
__________

 3 ( 2   5 _ 4   )  1 6  5 2 ( 2   5 _ 4   )  1 1 ⇒   √
_

   9 _ 4     5 2   3 _ 2   ⇒   3 _ 2    2   3 _ 2   

Therefore, x 5 2   5 _ 4   is not a solution.

When x 5 1,   √
________

 3(1) 1 6   5 2(1) 1 1 ⇒   √
__

 9   5 3 ⇒ 3 5 3 

Therefore, x 5 1 is the only solution.

If two quantities are equal, for example a 5 b, then it is certainly true that 
a2 5 b2, and a3 5 b3, etc. However, the converse is not necessarily true. A 
simple example can illustrate this. 

Consider the trivial equation x 5 3. There is only one value of x that makes 
the equation true – and that is 3. Now if we take this original equation and 
square both sides we transform it to the equation x  2 5 9. This transformed 
equation has two solutions, 3 and 23, so it is not equivalent to the original 
equation. By squaring both sides we gained an extra solution, often called 
an extraneous solution, that satisfies the transformed equation but not 
the original equation as occurred in Example 27. Whenever you raise both 
sides of an equation by a power it is imperative that you check all solutions 
in the original equation.

Example 28 – Solving an equation with two radical expressions 

Solve for x in the equation   √
______

 2x 2 3   2   √
_____

 x 1 7   5 2.

Every solution of the equation 
a 5 b is also a solution of the 
equation an 5 bn, but it is not 
necessarily true that every 
solution of an 5 bn is a solution 
of a 5 b.
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Solution

Squaring both sides of the original equation will produce a messy 
expression on the left side, so it is better to rearrange the terms so that one 
side of the equation contains only a single radical term.

  √
______

 2x 2 3   5 2 1  √
_____

 x 1 7  

(  √
______

 2x 2 3  )2 5 (2 1  √
_____

 x 1 7  )2

2x 2 3 5 4 1 4   √
_____

 x 1 7   1 x 1 7

x 2 14 5 4   √
_____

 x 1 7  
(x 2 14)2 5 (4  √

_____
 x 1 7  )2            Squaring both sides again to eliminate the 

radical.

x  2 2 28x 1 196 5 16(x 1 7)

x  2 2 44x 1 84 5 0

(x 2 2)(x 2 42) 5 0

x 5 2 or x 5 42

Check both solutions in the original equation:

When x 5 2,   √
________

 2(2) 2 3     ?
      5   2 1   √

_____
 2 1 7   ⇒   √

__
 1     ?

      5   2 1   √
__

 9   ⇒ 1  5

Thus, x 5 2 is not a solution.

When x 5 42,   √
_________

 2(42) 2 3     ?
      5   2 1   √

______
 42 1 7   ⇒   √

___
 81     ?

      5   2 1   √
___

 49   ⇒ 9 5 2 1 7

Thus, x 5 42 is a solution.

We can verify the single solution of x 5 42 using our GDC by graphing the 
equation y 5   √

______
 2x 2 3   2   √

_____
 x 1 7   2 2 and looking for x-intercepts (zeros). 

Since we are restricted to real number solutions then the smallest possible 
value for x that can be substituted into the equation is   3 _ 2  . This helps 
determine a suitable viewing window for the graph on our GDC.

=
Plot1 Plot2 Plot3
Y1 2X–3
7 –2

X+–( ((
(

Y2=
Y3=
Y4=
Y5=
Y6=

WINDOW

X=42

Y1= (2x–3)– (X+7)–2

Y=0

Xmin=-5
Xmax=60

Xres=1

Xscl=5

Yscl=1

Ymin=-5
Ymax=2

This verifies that x 5 42 is the only solution to the equivalent equation 
   √

______
 2x 2 3   5 2 1   √

_____
 x 1 7  .

Equations involving fractions
It is also possible for extraneous solutions to appear when solving 
equations with fractions.

Example 29 – An extraneous root in an equation with fractions 

Find all real solutions of the equation   2x ______ 
4 2 x  2

   1   1 _____ 
x 1 2

   5 3 and verify 
solution(s) with a GDC.
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Solution

X=1.6666667

Y1=2X/(4–X2)+1/(X+2)–3 Y1=2X/(4–X2)+1/(X+2)–3

Y=0 X=–2 Y=

WINDOW
Xmin=-3
Xmax=6

Xres=1

Xscl=1

Yscl=1

Ymin=-8
Ymax=4

=
Plot1 Plot2 Plot3
Y1 2X (4–X2)+1
(X+2)–3
Y2=
Y3=
Y4=
Y5=
Y6=

Multiply both sides of the equation by the least common denominator of 
the fractions, 4 2 x  2.

  4 2 x  2 ______ 
1

      2x ______ 
4 2 x  2

   1   
(2 2 x)(2 1 x)

  _____________ 
1

      1 _____ 
x 1 2

   5 3(4 2 x  2)

Factorizing 4 2 x  2 gives (2 2 x)(2 1 x). 
2x 1 2 2 x 5 12 2 3x  2

3x  2 1 x 2 10 5 0

(3x 2 5)(x 1 2) 5 0

x 5   5 _ 3   or x 5 22

Clearly x 5 22 cannot be a solution because that would cause division by 
zero in the original equation.

The GDC images show that the equation y 5   2x ______ 
4 2 x  2

   1   1 _____ 
x 1 2

   2 3 has an 

x-intercept at  (   5 _ 3  , 0 ) , confirming the solution x 5   5 _ 3  .

 Hint: Not only is it possible to gain an extraneous solution when solving certain equations, 
it is also possible to lose a correct solution by incorrectly dividing both sides of an equation 
by a common factor. For example, solve for x in the equaton 4(x 1 2)2 5 3x(x 1 2). Dividing 
both sides by (x 1 2), gives 4(x 1 2) 5 3x ⇒ 4x 1 8 5 3x ⇒ x 5 28. However, there are 
two solutions, x 5 28 and x 5 22. The solution of x 5 22 was lost because a factor of 
x 1 2 was eliminated from both sides of the original equation. This is a common error to be 
avoided.

Equations in quadratic form
In Section 3.2 we covered methods of solving quadratic equations. As the 
three previous examples illustrate, quadratic equations commonly appear 
in a range of mathematical problems. The methods of solving quadratics 
can sometimes be applied to other equations. An equation in the form  
at  2 1 bt 1 c 5 0, where t is an algebraic expression, is an equation in 
quadratic form. We can solve such equations by substituting for the 
algebraic expression and then apply an appropriate method for solving a 
quadratic equation.
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Example 30 – A 4th degree polynomial equation in quadratic form 

Find all real solutions of the equation 2m4 2 5m2 1 2 5 0.

Solution

The equation can be written as 2(m2 ) 2  2 5(m2) 1 2 5 0 showing it is 
quadratic in terms of m2. Let t 5 m 2, and substituting gives 2t  2 2 5t 1 2 5 0. 
Solve for t, substitute m 2 back in for t, and then solve for m.

2m 4 2 5m 2 1 2 5 0

Substitute t for m 2 2t  2 2 5t 1 2 5 0

 (2t 2 1)(t 2 2) 5 0

  t 5   1 __ 
2

   or t 5 2

Substituting m 2 for t  m 2 5   1 __ 
2

   or m 2 5 2

 m 5    √
__

   1 __ 
2

     5      
√

__
 2   ___ 

2
   or m 5    √

__

 2  

These four solutions – which are two pairs of opposites – can be checked 
by substituting them directly into the original equation. A value for m will 
be raised to the 4th and 2nd powers, thus we only need to check one value 
from each pair of opposites. 

When m 5     
√

__
 2   ___ 

2
  ,  2 (     √

__
 2   ___ 

2
   )  

4

  2  5 (     √
__

 2   ___ 
2

   )  
2

  1 2 5 0 ⇒ 2 (   1 __ 4   )  2 5 (   1 __ 
2

   )  1 2 5 0 

  ⇒   1 __ 
2

   2   5 __ 
2

   1 2 5 0 ⇒ 0 5 0

When m 5   √
__

 2  ,  2 (   √
__

 2   )  
4
  2  5 (   √

__
 2   )  2  1 2 5 0 ⇒ 2(4) 2 5(2) 1 2 5 0 

  ⇒ 8 2 10 1 2 5 0 ⇒ 0 5 0

Therefore, the solutions to the equation are m 5     
√

__
 2   ___ 

2
  , 2     

√
__

 2   ___ 
2

  ,   √
__

 2   and 2   √
__

 2  .

Example 31 – Another equation in quadratic form 

Find all solutions, expressed exactly, to the equation  w   
1
 _ 2    5  4 w    

1
 _ 4    2 2.

Solution

 w    
1
 _ 2    2  4 w    

1
 _ 4    1 2 5 0 Set the equation to zero.

  (  w    
1
 _ 4    )  

2
  2 4 (  w    

1
 _ 4    )  1 2 5 0  Attempt to write in quadratic form: 

at  2 1 bt 1 c 5 0

t  2 2 4t 1 2 5 0  Make appropriate substitution; 

in this case, let  w    
1

 _ 4    5 t.

t 5   
2(24)    √

______________

  (24)2 2 4(1)(2)  
   _______________________  

2
    Trinomial does not factorize; apply 

quadratic formula.

t 5   
4    √

__
 8  
 ______ 

2
   5   4  2  √

__
 2   _______ 

2
  

t 5 2    √
__

 2  
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 w    
1
 _ 4    5 2    √

__
 2    Substituting  w    

1
 _ 4    back in for t; raise both sides 

to 4th power.

w 5 (2 1   √
__

 2  )4 or w 5 (2 2   √
__

 2  )4

w 5   ( (2 1   √
__

 2  )2 )  2  or w 5   ( (2 2   √
__

 2  )2 )  2  

w 5 (6 1 4  √
__

 2  )2 or w 5 (6 2 4  √
__

 2  )2

w 5 68 1 48  √
__

 2    135.882 or w 5 68 2 48  √
__

 2    0.117 749 (approx. values 
found with GDC)

It will be difficult to check these two solutions by substituting them directly 
into the original equation as we did in the previous example. It will be 
more efficient to use our GDC.

Most GDC models have an equation ‘solver’. The main limitation of this 
GDC feature is that it will usually return only approximate solutions. 
However, even if exact solutions are required, approximate solutions from 
a GDC are still very helpful as a check of the exact solutions obtained 
algebraically.

Equations involving absolute value
Equations involving absolute value occur in a range of different topics in 
mathematics. To solve an equation containing one or more absolute value 
expressions, we apply the definition from Section 1.1, which states that the 
absolute value of a real number a, denoted by |a|, is given by

|a| 5 { a
2a

if a > 0
if a , 0

Also recall that in Section 1.1 we stated that |a| is the distance between the 
coordinate a and the origin on the real number line.

Example 32 – Equation with an absolute value expression 

Use an algebraic approach to solve the equation |2x 1 7| 5 13. Check any 
solution(s) on a GDC.

 Hint: We will encounter 
equations in later chapters – for 
example, equations with logarithms 
and trigonometric functions – that 
will be in quadratic form.

68+48 2
135.882251

0.1177490061
68–48 2
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Solution

The expression inside the absolute value symbols must be either 13 or 213, 
so 2x 1 7 equals 13 or 213. Hence, the given equation is satisfied if either

 2x 1 7 5 13 or 2x 1 7 5 213

 2x 5 6  2x 5 220

 x 5 3  x 5 210

The solutions are x 5 3 and x 5 210.

To check the solutions on a GDC, graph the equation y 5 |2x 1 7| 2 13 
and confirm that x 5 3 and x 5 210 are the x-intercepts of the graph.

Plot1 Plot2 Y1=abs(2X+7)–13

X=–10 Y=0

Plot3

Y2=
Y3=
Y4=
Y5=
Y6=

Y1=abs(2X+7)–13
Y1=abs(2X+7)–13

X=3 Y=0

The x-intercepts of the graph of y 5 |2x 1 7| 2 13 agree with the solutions 
to the equation.

Example 33 – Equation with two absolute value expressions 

Find algebraically the solution(s) to the equation |2x 2 1| 5 |7 2 3x|. 
Check the solution(s) graphically.

Solution

There are four possibilities:

2x 2 1 5 7 2 3x  or  2x 2 1 5 2(7 2 3x) or 2(2x 2 1) 5 7 2 3x 
or 2(2x 2 1) 5 2(7 2 3x)

The first and last equations are equivalent, and the second and third 
equations are also equivalent. Thus, it is only necessary to solve the first 
two equations.

2x 2 1 5 7 2 3x or 2x 2 1 5 2(7 2 3x)

5x 5 8  2x 2 1 5 27 + 3x

x 5   8 _ 5    6 5 x ⇒ x 5 6

To check, we can graph the equations y1 5 |2x 2 1| and y2 5 |7 2 3x|, and 
confirm that the x-coordinates of their points of intersection agree with 
the solutions to the given equation.

Graph Func  :Y= Y1=Abs
Y2=Abs

Y1=Abs
Y2=Abs

X=1.6 Y=2.2 X=6 Y=11
ISECT ISECT

(2X–1)
(7–3X)

(2X–1)
(7–3X)Y1=Abs (2X–1)

Y2=Abs (7–3X)

Y4:
Y5:
Y6:
SEL

Y3:

DRAWDEL TYPE STYL GMAM
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Solving inequalities
Working with inequalities is very important for many of the topics in this 
course. Inequalities were covered in Section 1.1 in the context of order on 
the real number line. Recall the four important properties for inequalities.

Properties of inequalities
For three real numbers a, b and c:
1. If a . b and b . c, then a . c. 2. If a . b and c . 0, then ac . bc.
3. If a . b and c , 0, then ac , bc. 4. If a . b, then a + c . b + c.

Quadratic inequalities

In the topics covered in this course, you will need to be as proficient with 
solving inequalities as with solving equations. We solved some simple 
linear inequalities in Section 1.1. Here we will consider strategies for other 
inequalities – particularly involving quadratic and absolute value expressions. 

Example 34 – A quadratic inequality 

Find the values of x that solve the inequality x  2 . x.

Solution

It is possible to determine the solution set to this inequality by a method 
of trial and error, or simply using a mental process. That may be successful 
but generally speaking it is a good idea to attempt to find the solution set by 
some algebraic method and then check, usually by means of a GDC. For this 
example, it is tempting to consider dividing both sides by x, but that cannot 
be done because it is not known whether x is positive or negative. Recall that 
when multiplying or dividing both sides of an inequality by a negative number 
it is necessary to reverse the inequality sign (3rd property of inequalities 
listed above). Instead a better approach is to place all terms on one side of the 
inequality (with zero on the other side) and then try to factorize.

 x  2 . x

 x  2 2 x . 0
 x(x 2 1) . 0  Now analyze the signs of the two different factors in a ‘sign chart’.

sign chart

0 1
x

x 2 0 1 1

x 2 1 2 2 0 1

x(x 2 1) 1 0 2 0 1

The sign chart indicates that the product of the two factors, x(x 2 1), will 
be positive when x is less than 0 or greater than 1. Therefore, the solution 
set is x , 0 or x . 1.

 Hint: The solution set, x , 0 or 
x . 1, for Example 34 comprises 
two intervals that do not intersect 
(disjoint). It is incorrect to write the 
solution as 0 . x . 1, or as 
1 , x , 0. Both of these formats 
imply that the solution set consists 
of the values of x between 0 and 1, 
but that is not the case. Only write 
the ‘combined’ inequality  
a , x , b if x . a and x , b 
where the two intervals are 
intersecting between a and b.
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Inequalities with quadratic polynomials arise in many different contexts. 
Problems in which we need to analyze the value of the discriminant of a 
quadratic equation will usually require us to solve a quadratic inequality, as 
the next example illustrates.

Example 35 – A quadratic from evaluating a discriminant 

Given f  (x) 5 3kx  2 2 (k 1 3)x 1 k 2 2, find the range of values of k for 
which f   has no real zeros.

Solution

The quadratic function f will have no real zeros when its discriminant is 
negative. Since f is written in the form ax  2 1 bx 1 c 5 0 then, in terms of 
the parameter k, a 5 3k, b 5 2(k 1 3) and c 5 k 2 2. Substituting these 
values into the discriminant, we have the inequality

(2(k 1 3))2 24(3k)(k 2 2) , 0

k 2 1 6k 1 9 2 12k 2 1 24k , 0
211k 2 1 30k 1 9 , 0 Easier to factorize if leading coefficient is positive.

11k 2 2 30k 2 9 . 0 Multiply both sides by 21; reverse inequality sign.

k 5   
2(230)    √

_________________

  (230)2 2 4(11)(29)  
   ____________________________  

2(11)
   5   

30    √
_____

 1296  
 __________ 

22
   5   30  36 _______ 

22
  

k 5   30 1 36 _______ 
22

   5   66 ___ 
22

   5 3  or  k 5   30 2 36 _______ 
22

   5 2   6 ___ 
22

   5 2   3 ___ 
11

  

The two rational zeros indicate 11k 2 2 30k 2 9 could have been factorized 
into (11k 1 3)(k 2 3):

 (11k 1 3)(k 2 3) . 0

The results of the sign chart indicate that the solution set to the inequality 

is k , 2   3 __ 11   or k . 3. Therefore, any value of k such that k , 2   3 __ 11   or k . 3 

will cause the function f to have no real zeros.

sign chart

2   3 __ 11  3
k

11k 1 3 2 0 1 1

k 2 3 2 2 0 1

(11k 1 3)(k 2 3) 1 0 2 0 1

Absolute value inequalities

In Section 1.1 we described how absolute value is used to indicate distance 
on the number line. For example, the equation |x| 5 3 means that some 
number x is a distance of 3 units from the origin. The two solutions to 
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this equation are x 5 3 and x 5 23. Consequently, the inequality |x| , 3 
means that x lies at most 3 units from the origin, as shown in Figure 3.13.

This means that x lies between 23 and 3, that is, 23 , x , 3. Similarly, the 
inequality |x| . 3 means that x lies 3 or more units from the origin. This 
occurs if x is to the left of 23 (that is, x , 23) or if x lies to the right of 3 
(that is, x . 3).

Properties of absolute value inequalities
For any real numbers x and c such that c . 0:

1. |x| , c if and only if 2c , x , c.

2. |x| . c if and only if x , 2c or x . c.

Example 36 – Absolute value inequality I 

Solve for x : |3x 2 7| > 8

Solution

Applying the second property for absolute value inequalities, we have

 3x 2 7 < 28 or 3x 2 7 > 8

 3x < 21 or 3x > 15

 x < 2   1 _ 3   or x > 5

Therefore, the solution set is the union of two half-open intervals  
x < 2   1 _ 3   or x > 5, which can also be written in interval notation as 

]2, 2   1 _ 3  ]  [5, [.

Example 37 – Absolute value inequality II 

Find the values of x which satisfy the inequality  |   x _____ x 1 4   |  , 2.

Solution

Applying the first property for absolute value inequalities gives

 22 ,   x _____ x 1 4   , 2

We cannot multiply both sides by x 1 4 unless we take into account the 
two different cases: (1) when x 1 4  is positive (inequality is not reversed), 
and (2) when x 1 4  is negative (inequality sign is reversed). Instead, 
let’s solve the two inequalities in the ‘combined’ inequality separately 
by rearranging so that zero is on one side and then analyze where the 
expression on the other side is zero, positive and negative. This is similar to 
the approach used in Example 34.

�4 �3 �2 �1 0 1 2

3 units

3 4

3 unitsFigure 3.13
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   x _____ x 1 4   . 22       and         x _____ x 1 4   , 2  the word ‘and’ indicates intersection

   x _____ x 1 4   1 2 . 0       and         x _____ x 1 4   2 2 , 0

   x _____ x 1 4   1   2x 1 8 ______ x 1 4   . 0       and         x _____ x 1 4   2   2x 1 8 ______ x 1 4   , 0 

  3x 1 8 ______ x 1 4   . 0       and         2x 2 8 _______ x 1 4   , 0

�4 � 8
3 �8 �4

The solution set for the original ‘combined’ inequality, 22 ,   x _____ x 1 4   , 2, 

will be the intersection of the solution sets of the two separate inequalities 

graphed above on the number line. Thus, the solution set is x , 28 or 

x . 2   8 _ 3  .

A graphical check using a GDC can be effectively performed by graphing 

the equation y 5  |   x _____ x 1 4   |  2 2 and observing where the graph is below the 

x-axis. The values of x for which this is true will correspond to the solution 

set for the inequality  |   x _____ x 1 4   |  , 2.

28 24
x

2x 2 8 1 0 2 2

x 1 4 2 2 0 1

  2x 2 8 _______ 
x 1 4

  2 0 1 X 2

x , 28  x . 24

24 2   8 _ 3  
x

3x 1 8 2 2 0 1

x 1 4 2 0 1 1

  3x 1 8 ______ x 1 4  1 X 2 0 1

x , 24  x . 2   8 _ 3  

Plot1 Plot2 Plot3

Y3=
Y2=
–2

Y4=
Y5=
Y6=

Y1=abs(X/(X+4))–2

X=-8 Y=0

Y1=abs(X/(X+4))
WINDOW
Xmin=-12
Xmax=2

Xres=1

Xscl=1

Yscl=1

Ymin=-3 
Ymax=3 

Y1=abs(X/(X+4))–2

X=-2.666667 Y=0
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Example 38 – Algebraic and graphical methods 

Solve the inequality |x 2 4| . 2|x 2 7|.

Solution

Method 1 – Algebraic
If a . 0, b . 0 and a 5 b, then a 2 5 b 2. Since the expressions on both sides 
must be positive then we can square both sides and remove the absolute 
value signs.

(x 2 4)2 . (2(x 2 7))2

x  2 2 8x 1 16 . 4(x  2 2 14x 1 49)

x  2 2 8x 1 16 . 4x  2 2 56x 1 196

0 . 3x  2 2 48x 1 180

0 . x  2 2 16x 1 60

(x 2 10)(x 2 6) , 0

Therefore, the solution set is the open interval 6 , x , 10.

Method 2 - Graphical
We can graph the two equations y1 5 |x 2 4| and y2 5 2|x 2 7| and use our 
GDC to determine for what values of x the graph of y1 is above the graph 
of y2.

Y1=Abs
Y2=2Abs

X=6 Y=2
ISECT

(X–4)
(X–7)

Y1=Abs
Y2=2Abs

(X–4)
(X–7)

X=10 Y=6
ISECT

The equation y2 5 2|x 2 7| has been graphed in a dashed style. By using 
the ‘intersect’ command on the GDC we find that the graph of y1 is above 
the graph of y2 for 6 , x , 10. Therefore, the solution set is the open 
interval 6 , x , 10.

Example 39 – Inequality involving rational expressions 

For what values of x is   x _____ 
x 1 8

   <   1 _____ 
x 2 1

   ? Solve algebraically.

Solution

As applied in previous examples, an effective algebraic approach is to 
rearrange the inequality so that both fractions are on the same side with 

6 10
x

x 2 10 2 2 0 1

x 2 6 2 0 1 1

(x 2 10)(x 2 6) 1 0 2 0 1



143

zero on the other side. Then combine the two fractions into one fraction 
and analyze where the fraction is zero, positive and negative.

  x _____ 
x 1 8

   2   1 _____ 
x 2 1

   < 0

  
x(x 2 1) 2 (x 1 8)

  ________________  
(x 1 8)(x 2 1)

   < 
0

  x  2 2 2x 2 8  _____________  
(x 1 8)(x 2 1)

   < 0

  
(x 1 2)(x 2 4)

  _____________  
(x 1 8)(x 2 1)

   < 0

Therefore,   x _____ 
x 1 8

   <   1 _____ 
x 2 1

   when 28 , x < 22 or 1 , x < 4, which can 

also be expressed in interval notation as ]28, 22]  ]1, 4].

Exercise 3.5

In questions 1–22, solve for x in the equation. If possible, find all real solutions 
and express them exactly. If this is not possible, then solve using your GDC and 
approximate any solutions to three significant figures. Be sure to check answers and 
to recognize any extraneous solutions.

 1   √
_____

 x 1 6   1 2x 5 9  2   √
_____

 x 1 7   1 5 5 x

 3   √
_______

 7x 1 14   2 2 5 x  4   √
______

 2x 1 3   2   √
_____

 x 2 2   5 2

 5   5 _____ x 1 4   2   4 __ x   5   21 _______ 5x 1 20    6   x 1 1 ______ 
2x 1 3

   5   5x 2 1 ______ 7x 1 3  

 7   1 __ x   2   1 _____ x 1 1   5   1 _____ x 1 4    8   2x ______ 
1 2 x  2   1   1 _____ x 1 1   5 2

 9 x  4 2 2x  2 2 15 5 0 10  2x   
2 _ 3    2  x   

1 _ 3    2 15 5 0

11 x  6 2 35x  3 1 216 5 0 12 5x22 2 x21 2 2 5 0

13 |3x 1 4| 5 8 14 |x 1 6| 5 |3x 2 24|

15 |5x 1 1| 5 2x 16 |x 2 1| 1 |x| 5 3

17  |   x 1 1 _____ x 2 1
   |  5 3 18   √

__
 x   2   6 ___   √

__
 x     = 1

19   √
_____

 4 2 x   2   √
_____

 6 1 x   5   √
_______

 14 1 2x   20   6 _____ x2 + 1
   =   1 __ x2   +   10 _____ x2 + 4

  

21 x 2   √
______

 x 1 10   5 0 22 6x 2 37  √
__

 x   1 56 5 0

In questions 23–30, find the values of x that solve the inequality.

23 3x  2 2 4 , 4x 24   2x 2 1 ______ x 1 2   > 1

25 2x  2 1 8x < 120 26 |1 2 4x| . 7

27 |x 2 3| . |x 2 14| 28  |   x  2 2 4 ______ x    |  < 3

29   x _____ x 2 2
   .   1 _____ x 1 1   30   4x 2 1 ___________ x  2 2 2x 2 3

   , 3

28 22 1 4

x 1 2 2 2 0 1 1 1

x 2 4 2 2 2 2 0 1

x 1 8 2 0 1 1 1 1

x 2 1 2 2 2 0 1 1

  
(x + 2)(x 2 4)

 __________ 
 (x + 8)(x 2 1)

  1 X 2 1 X 2 1

x
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3.6   Partial fractions (Optional) 

In arithmetic, when we add fractions we find the least common 
denominator. Then we multiply both the numerator and denominator of 
each term by what is needed to complete the common denominator. For 
example:

2 _
3  1 5 _7  5 2 _

3   7 _7  1 5 _7   3 _
3  5 14 1 15 _______

21  5 29 __
21 

2 _
3  1 5 _

9  1 1 __
27  5 2 _

3   9 _
9  1 5 _

9   3 _
3  1 1 __

27  5 18 1 15 1 1 __________
27  5 34 __

27 

Reversing the process is called expressing each compound fraction as 

partial fractions. That is, given for example the fraction 29 __
21  5  29 _____

3 3 7 , we 

express it as a sum of two fractions. One fraction has denominator 3 and 
the other has denominator 7. Hence, we have the name partial fractions.

The process of finding the partial fractions is a straightforward process. We 
write:

 29 _____
3 3 7  5 a _

3  1 b _7  and then we solve for two integers a and b.

 29 _____
3 3 7  5 a _

3  1 b _7  5 7a 1 3b ______
21  ⇒ 7a 1 3b 5 29

Now by trial and error we can find that a 5 2 and b 5 5. Other answers are 
also possible (21, 12), (8, 29) …

Notice the situation in the second example. The L.C.M. contains different 
powers of the same number. Consequently, when finding the partial 
fractions decomposition you need to consider that all powers less than 

31 Find the values of p for which the equation px  2 2 3x 1 1 5 0 has a) one real 
solution, b) two real solutions, and c) no real solutions.

32 Given f  (x) 5 x  2 1 x(k 2 1) 1 k2, find the range of values of k so that f  (x) . 0 for 
all real values of x.

33 Show that both of the following inequalities are true for all real numbers m and n 
such that m . n . 0.

a) m 1   1 __ 
n

   . 2 b) (m 1 n) (   1 __ 
m

   1   1 __ 
n

   )  . 4

34 Find all of the exact solutions to the equation (x  2 1 x)2 5 5x  2 1 5x 2 6.

35 If a, b and c are positive and unequal, show that (a 1 b 1 c)2 , 3(a2 1 b 2 1 c2).

36 Find the values of x that solve each inequality.

a)  |   2x 2 3 ______ x    |  , 1 b)   3 _____ x 2 1   2   2 _____ x 1 1   , 1

37 Provide a geometric or algebraic argument to show that |a 1 b| < |a| 1 |b| for 
all a, b  R.
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or equal to the highest one may be present. That is, when we set up the 
process of decomposing 24 __

27  we set it up in the following manner:

24 __
27  5 a __

27  1 b _
9  1 c _

3 

Then we attempt to find the values of a, b, and c.

In algebra, we carry out that process on the addition of rational 
expressions. Once again we multiply the numerator and denominator of 
each term by what was missing from the denominator of that term.

Partial fractions decomposition (PFD)

With partial fractions decomposition, we are going to reverse the process 
and decompose a rational expression into two or more simpler proper 
rational expressions. This is a very useful skill in which a single fraction 
with a factorable denominator is split into the sum of two or more 
fractions (partial fractions) whose denominators are the factors of the 
original denominator. 

For example:  12x 2 1 __________
2x 2 2 5x 2 3

  5  2 ______
2x 1 1  1  5 _____

x 2 3 

Example 40 

Find the partial fraction decomposition of  x 1 1 __________
x 2 1 5x 1 6

 .

Solution

 x 1 1 __________
x 2 1 5x 1 6

    x 1 1 ____________
(x 1 2)(x 1 3)

 , and hence we will attempt to find two 

numbers a and b such that:

 x 1 1 __________
x 2 1 5x 1 6

    a _____
x 1 2  1  b _____

x 1 3       (Notice that we wrote this as an 

identity rather than equality because 

it has to be true for all values of x and 

not only for a few.)

 x 1 1 __________
x 2 1 5x 1 6

    a _____
x 1 2  1  b _____

x 1 3   
a(x 13) 1 b(x 1 2)

  _______________
(x 1 2)(x 1 3)

 

Since the denominators of these identical fractions are the same, their 
numerators must also be the same. That is

x 1 1  a(x 1 3) 1 b(x 1 2).

We have two methods of solution here. 

First method

x 1 1  a(x 1 3) 1 b(x 1 2) ⇔ x 1 1  (a 1 b)x 1 (3a 1 2b)

For two polynomials to be identical, the coefficients of the same powers 
must be the same, that is, the coefficient of x on the left must be the same 
as the coefficient of x on the right and similarly the constant terms. Hence:

The method of partial fractions 
decomposition is extremely 
helpful in evaluating certain 
integrals as you will see in 
Section 16.5 (optional).
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1 5 a 1 b and 1 5 3a 1 2b

Now, solving the system with two equations will yield:

a 5 21 and b 5 2

Hence,  x 1 1 __________
x 2 1 5x 1 6

    21 _____
x 1 2  1  2 _____

x 1 3 .

Second method
x 1 1  a(x 1 3) 1 b(x 1 2)

Again, since this is an identity, the two sides must be the same for any 
choice of x. Hence, we can substitute any two numbers for x to get the 
value of each of a and b, specifically replacing x with 23 yields: 

x 1 1  a(x 1 3) 1 b(x 1 2) ⇒ 22 5 2b ⇒ b 5 2.

Notice how the choice of 23 eliminated the term with a and allowed us to 
find b directly. Replacing x with 22 yields:

x 1 1  a(x 1 3) 1 b(x 1 2) ⇒ 21 5 a.

This is of course the same result as above. Also notice here how the choice 
of 22 eliminated the term with b and allowed us to find a directly.

Note: This method is helpful in cases where there are no repeated factors.

The second method is faster whenever applicable. (We will discuss this in 
more detail later.)

Example 41 

Find the PFD for  5x 2 1 16x 1 17  _______________
2x 3 1 9x 2 1 7x 2 6

 .

Solution

 5x 2 1 16x 1 17  _______________
2x 3 1 9x 2 1 7x 2 6

     5x 2 1 16x 1 17  __________________
(2x 2 1)(x 1 2)(x 1 3)

  

   a ______
2x 2 1  1  b _____

x 1 2  1  c _____
x 1 3 

First method
5x 2 1 16x 1 17   a(x 1 2)(x 1 3) 1 b(2x 2 1)(x 1 3) 1 c(2x 2 1)(x 1 2)

  (a 1 2b 1 2c)x 2 1 (5a 1 5b 1 3c)x 1 6a 2 3b 2 2c

This leads to this system: {  a 1 2b 1 2c 5 5
  


 5a 1 5b 1 3c 5 16  

 6a 2 3b 2 2c 5 17


Using any method of your choice for solving systems of equations, you 
should have:

a 5 3, b 5 21, c 5 2 and hence:

 5x 2 1 16x 1 17  _______________
2x 3 1 9x 2 1 7x 2 6

    3 ______
2x 2 1

  2  1 _____
x 1 2

  1  2 _____
x 1 3

 

This is also called the ‘cover-up’ 
method. This method allows 
the choice of numbers that are 
not initially in the domain of 
the original rational expression.
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Second method

5x 2 1 16x 1 17  a(x 1 2)(x 1 3) 1 b(2x 2 1)(x 1 3) 1 c(2x 2 1)(x 1 2)

x 5 22 ⇒ 5 5 25b ⇒ b 5 21

x 5 23 ⇒ 14 5 7c ⇒ c 5 2

x 5 1 _
2  ⇒ 105 ___4  5 35 __4 a ⇒ a 5 3

Example 42 

Write  3x 2 1 __________
x 2 1 4x 1 4

  as the sum of partial fractions.

Solution

The first step is to factorise the denominator.

x 2 1 4x 1 4 5 (x 1 2)2 

Here the denominator has a repeated linear factor:  3x 2 1 __________
x 2 1 4x 1 4

  5 3x 2 1 _______
(x 1 2)2 

Properties
1 Partial fractions decomposition only works for proper rational expressions, that is, 

the degree of the numerator must be less than the degree of the denominator. If 
it is not, then you must perform long division first, and then perform the partial 
fractions decomposition on the rational part (the remainder over the divisor). After 
you’ve done the partial fraction decomposition, just add back in the quotient part 
from the long division.

2 Linear factors: We can only decompose the partial fractions into proper rational 
expressions. Hence, in each partial fraction, when the denominator is linear, only a 
constant can be in the numerator. So, for every linear factor in the denominator, you 
will need a constant in the numerator. See Examples 40 and 41 above.

3 Repeated linear factors: If the denominator of the rational expression contains 
repeated linear factors, then following our discussion in the introduction, the 
process is as follows.

 We need to include a factor in the expansion for each power possible. For example, 
if we have (x 2 1)3, we will need to include (x 2 1), an (x 2 1)2, and 
(x 2 1)3. Each of those (x 2 1) factors would have a constant term in the numerator 
because x 2 1 is linear, no matter what power it is raised to.

 For example:   13x3 2 62x2 1 101x 2 58  _____________________  
(x 2 1)3(2x 2 5)

      a _______ 
(x 2 1)3   1   b _______ 

(x 2 1)2   1   c _____ x 2 1   1   d ______ 2x 2 5  

4 Irreducible quadratic factors: If the rational expression we are decomposing 
contains irreducible quadratic factors in the denominator, then the numerator 
could have a linear term and/or a constant term. So, for every irreducible quadratic 
factor in the denominator, you will need a linear term and a constant term in the 
numerator.

 For example:   28x3 1 15x2 2 26x 1 33  ____________________  
(x 2 1)2(2x 2 1 5)

      a _______ 
(x 2 1)2   1   b _____ x 2 1   1   cx 1 d _______ 

2x 2 1 5
  

Note: It may turn out that any of the numbers a, b, c, or d is zero.
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Because there are two (i.e. repeated) linear factors of x 1 2 in the 
denominator of the original rational expression then it must have a partial 
fraction with a denominator of (x 1 2)2, and it may also have a partial 
fraction with a denominator of x 1 2.

Thus, we are looking for constants A and B such that:

3x 2 1 _______
(x 1 2)2    A _____

x 1 2  1  B _______
(x 1 2)2 

Multiplying both sides of the equation by (x 1 2)2 gives:

3x 2 1  A(x 1 2) 1 B

Essentially, the task is to find the unique values of A and B such that 
this equation is an identity, i.e. it is true for all values of x for which the 
original fraction is defined (in this case x ≠ 22). However, as you recall, the 
‘cover-up’ method allows us to choose ‘helpful’ values of x including such 
numbers. For example, in this case, if x 5 22 then A is eliminated and the 
value of B can be found directly.

Let x 5 22: 3x 2 1  A(x 1 2) 1 B  ⇒  3(22) 2 1 5 A  0 1 B 
  ⇒ B 5 27

Let x 5 0: 3x 2 1  A(x 1 2) 1 B  ⇒  3  0 2 1 5 2A 2 7 
  ⇒ 2A 5 6 
  ⇒ A 5 3

Therefore,  3x 2 1 __________
x 2 1 4x 1 4

  5  3 _____
x 1 2  2  7 _______

(x 1 2)2 

Example 43 

Write  2 ___________
x 3 1 3x 2 1 2x

  as the sum of partial fractions.

Solution

We first factorize the denominator and discover that one of the factors is 
an irreducible quadratic factor:

 2 ___________
x 3 1 3x 2 1 2x

  5  2 ____________
x(x 2 1 2x 1 2)

   a _
x
  1  bx 1 c __________

x 2 1 2x 1 2
 

Simplifying the expression gives:

2  a(x 2 1 2x 1 2) 1 x(bx 1 c) ⇒ 2  (a 1 b)x 2 1 (2a 1 c)x 1 2a ⇒

{ a 1 b 5 0 2a 1 c 5 02a 5 2  ⇒ { a 5 1 
b 5 21


c 5 22 

Therefore  2 ___________
x 3 1 2x 2 1 2x

  5 1 __ 
x
  2  x 1 2 __________

x 2 1 2x 1 2
 .
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Exercise 3.6

Decompose each of the following rational expressions into partial fractions.

 1  5x 1 1 _________
x 2 1 x 2 2

   2  x 1 4 _______
x 2 2 2x

 

 3  x 1 2 __________
x 2 1 4x 1 3

    4 5x 2 1 20x 1 6  ___________
x 3 1 2x 2 1 x

 

 5 2x 2 1 x 2 12  ___________
x 3 1 5x 2 1 6x

   6 4x 2 1 2x 2 1  ___________
x 3 1 x 2

 

 7  3 _________
x 2 1 x 2 2

   8  5 2 x __________
2x 2 1 x 2 1

 

 9 3x 1 4 ______
(x 1 2)2  10  12 ___________

x 4 2 x 3 2 2x 2
 

11  2 ______
x 3 1 x

  12  x 1 2 _______
x 3 1 3x

 

13 3x 1 2 _______
x 3 1 6x

  14 2x 1 3 _______
x 3 1 8x

 

15  x 1 5 ____________
x 3 2 4x 2 2 5x

 

  1	 Solve	for	x	in	the	equation	x		2	2	(a	1	3b)x	1	3ab	5	0.

  2	 Find	the	values	of	x	that	solve	the	following	inequality.

	 		3x	2	2	______	
5
	 		1	3	>			4x	2	1	______	

3
	 	

  3	 For	what	value	of	c	is	the	vertex	of	the	parabola	y	5	3x		2	2	8x	1	c	at		( 		4	__	
3
		,	2			1	__	

3
			)	?

  4	 The	quadratic	function	f		(x)	=	ax		2	1	bx	1	c	has	the	following	characteristics:

	 (i)	passes	through	the	point	(2,	4);	(ii)	has	a	maximum	value	of	6	when	x	5	4;	
and	(iii)	has	a	zero	of	x	5	4	1	2		√

__
	3		

	 Find	the	values	of	a,	b	and	c.

  5	 If	the	roots	of	the	equation	x		3	1	5x		2	1	px	1	q	5	0	are	,	2	and		1	3,	find	the	
values	of	,	p	and	q.

  6	 Find	all	values	of	m	such	that	the	equation	mx		2	2	2(m	1	2)x	1	m	1	2	5	0	has	
a)	two	real	roots;	b)	two	real	roots	(one	positive	and	one	negative).	

  7	 x	2	1	and	x	1	1	are	factors	of	the	polynomial	x		3	1	ax		2	1	bx	1	c,	and	the	polynomial	
has	a	remainder	of	12	when	divided	by	x	2	2.	Find	the	values	of	a,	b	and	c.

  8	 Solve	the	inequality	|x|	,	5|x	2	6|.

  9	 Find	the	range	of	values	for	k	in	order	for	the	equation	2x		2	1	(3	2	k)x	1	k	1	3	5	0	to	
have	two	imaginary	solutions.	

10	 Consider	the	rational	function	f		(x)	5			2x		2	1	8x	1	7		___________	x		2	1	4x	1	5
		.	Do	not	use	your	GDC	for	this	

question.
a)	 Write	f		(x)	in	the	form	a	2			 b	__________	

(x	1	c)2	1	d
			.
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b)	 State	the	values	of	(i)			 lim				
x→1

	 f		(x),	and	(ii)			 lim				x→2
	 f		(x).

c)	 State	the	coordinates	of	the	minimum	point	on	the	graph	of	f		(x).

11	 Find	the	values	of	k	so	that	the	equation	(k	2	2)x		2	1	4x	2	2k	1	1	5	0	has	two	
distinct	real	roots.

12	 When	the	function	f		(x)	5	6x		4	1	11x		3	–	22x		2	1	ax	1	6	is	divided	by	(x	1	1)	the	
remainder	is	220.	Find	the	value	of	a.

13	 The	polynomial	p(x)	5	(ax	1	b)3	leaves	a	remainder	of	21	when	divided	by	(x	1	1),	
and	a	remainder	of	27	when	divided	by	(x	2	2).	Find	the	values	of	the	real	numbers	a	
and	b.

14	 The	polynomial	f		(x)	5	x		3	1	3x		2	1	ax	1	b	leaves	the	same	remainder	when	divided	
by	(x	2	2)	as	when	divided	by	(x	1	1).	Find	the	value	of	a.

15	 When	the	polynomial	x		4	1	ax	1	3	is	divided	by	(x	2	1),	the	remainder	is	8.	Find	the	
value	of	a.	

16	 The	polynomial	x		3	1	ax		2	2	3x	1	b	is	divisible	by	(x	2	2)	and	has	a	remainder	6	when	
divided	by	(x	1	1).	Find	the	value	of	a	and	of	b.

17	 The	polynomial	x		2	2	4x	1	3	is	a	factor	of	x3	1	(a	2	4)x		2	1	(3	2	4a)x	1	3.	
Calculate	the	value	of	the	constant	a.	

18	 Consider	f		(x)	5	x		3	2	2x		2	2	5x	1	k.	Find	the	value	of	k	if	(x	1	2)	is	a	factor	of	f		(x).

19	 Find	the	real	number	k	for	which	1	1	k		i	(i	5			√
___

	21		)	is	a	zero	of	the	polynomial	
z	2	1	kz	1	5.

20	 The	equation	kx		2	2	3x	1	(k	1	2)	5	0	has	two	distinct	real	roots.	Find	the	set	of	
possible	values	of	k.

21	 Consider	the	equation	(1	1	2k)x		2	2	10x	1	k	2	2	5	0,	k		R.	Find	the	set	of	values	
of	k	for	which	the	equation	has	real	roots.

22	 Find	the	range	of	values	of	m	such	that	for	all	x
m(x	1	1)	<	x		2.

23	 Find	the	values	of	x	for	which	|5	2	3x|	<	|x	1	1|.

24	 Solve	the	inequality	x		2	2	4	1			3	__	x  	,	0.

25	 Solve	the	inequality	|x	2	2|	>	|2x	1	1|.

26	 Let	f		(x)	5			x	1	4	_____	x	1	1
		,	x		21	and	g	(x)	5			x	2	2	_____	x	2	4

		,	x		4.

	 Find	the	set	of	values	of	x	such	that	f		(x)	<	g(x).

27	 Solve	the	inequality		| 		x	1	9	_____	x	2	9
			|		<	2.

28	 Given	that	2	1	i	is	a	root	of	the	equation	x		3	2	6x		2	1	13x	2	10	5	0	find	the	other	
two	roots.

29	 Find	all	values	of	x	that	satisify	the	inequality			 2x ______	
|x	2	1|

 		,	1.
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